Open Access
Review
Numéro
OCL
Volume 30, 2023
Numéro d'article 10
Nombre de pages 8
Section Nutrition - Health
DOI https://doi.org/10.1051/ocl/2023008
Publié en ligne 8 juin 2023
  • Ahmed OS, Galano J-M, Pavlickova T, et al. 2020. Moving forward with isoprostanes, neuroprostanes and phytoprostanes – Where are we know? Essays Biochem 64: 463–484. [CrossRef] [PubMed] [Google Scholar]
  • Andersson DC, Marks AR. 2010. Fixing ryanodine receptor Ca2+ leak – A novel therapeutic strategy for contractile failure in heart and skeletal muscle. Drug Discov Today: Dis Mech 7: e151–e157. [CrossRef] [Google Scholar]
  • Barden A, Beilin LJ, Ritchie J, Croft KD, Walters BN, Michael CA. 1996. Plasma and urinary 8 isoprostane as an indicator of lipid peroxidation in preeclampsia and normal pregnancy. Clin Sci (Lond) 91: 711–718. [CrossRef] [PubMed] [Google Scholar]
  • Barden AE, Mori TA, Dunstan JA, et al. 2004. Fish oil supplementation in pregnancy lowers F2-isoprostanes in neonates at high risk of atopy. Free Radic Res 38: 233–239. [CrossRef] [PubMed] [Google Scholar]
  • Barden AE, Corcoran TB, Mas E, et al. 2012. Are isofurans and neuroprostanes increased after aneurysmal subarachnoid hemorrhage and traumatic brain injury? Antioxid Redox Signal 16: 165–169. [CrossRef] [PubMed] [Google Scholar]
  • Bosviel R, Joumard-Cubizolles L, Chinetti-Gbaguidi G, et al. 2017. DHA-derived oxylipins, neuroprostanes and protectins, differentially and dose-dependently modulate the inflammatory response in human macrophages: Putative mechanisms through PPAR activation. Free Radic Biol Med 103: 146–154. [CrossRef] [PubMed] [Google Scholar]
  • Brinkmann Y, Oger C, Guy A, Durand T, Galano JM. 2010. Total synthesis of 15-D2t- and 15-E2t-isoprostanes. J Org Chem 75: 2411–2414. [CrossRef] [PubMed] [Google Scholar]
  • Cascant-Vilaplana MM, Sánchez-Illana Á, Piñeiro-Ramos JD, et al. 2021. Do levels of lipid peroxidation biomarkers reflect the degree of brain injury in newborns? Antiox Redox Signal 37: 1467–1475. [CrossRef] [PubMed] [Google Scholar]
  • Collado-Gonzales J, Medina S, Durand T, et al. 2015. New UPLC-QqQ-MS/MS method for quantitative and qualitative determination of 10 phytoprostanes in foodstuffs in commercial olive and sunflower oils. Food Chem 178: 212–220. [CrossRef] [PubMed] [Google Scholar]
  • Corcoran TB, Mas E, Barden AE, et al. 2011. Are isofurans and neuroprostanes increased after aneurysmal subarachnoid hemorrhage and traumatic brain injury? Antioxid Redox Signal 15: 2663–2667. [CrossRef] [PubMed] [Google Scholar]
  • Cortelazzo A, De Felice C, Guerranti R, et al. 2016. Abnormal N-glycosylation pattern of brain nucleotide pyrophosphatase-5 (NPP-5) in Mecp2-mutant murine models of Rett syndrome. Neurosc Res 105: 28–34. [CrossRef] [Google Scholar]
  • De Felice C, Signorini C, Durand T, et al. 2011. Dihomo-isoprostanes as potential early biomarkers of lipid oxidative damage in Rett syndrome 2011. J Lipid Res 52: 2287. [CrossRef] [PubMed] [Google Scholar]
  • De Felice C, Signorini C, Leoncini S, et al. 2012. The role of oxidative stress in Rett syndrome: An overview. Ann NY Acad Sci 1259: 121–135. [CrossRef] [Google Scholar]
  • De La Torre A, Lee YY, Oger C, et al. 2014. Synthesis, discovery and quantitation of dihomo-isofurans: Novel biomarkers of in vivo adrenic acid peroxidation. Angew Chem Int Ed 53: 6249–6252. [CrossRef] [Google Scholar]
  • De La Torre A, Lee YY, Mazzoni A, et al. 2015. Total syntheses and in vivo quantitation of novel neurofuran and dihomo-isofuran derived from docosahexaenoic acid and adrenic acid. Chem Eur J 21: 2442–2446. [CrossRef] [Google Scholar]
  • Dupuy A, Le Faouder P, Vigor C, et al. 2016. Simultaneous quantitative profiling of 20 isoprostanoids from omega-3 and omega-6 polyunsaturated fatty acids by LC-MS/MS in various biological samples. Anal Chim Acta 921: 46–58. [CrossRef] [PubMed] [Google Scholar]
  • Farias SE, Basselin M, Chang L, Heidenreich KA, Rapoport SI, Murphy RC. 2008. Formation of eicosanoids, E2/D2 isoprostanes, and docosanoids following decapitation-induced ischemia, measured in high-energy-microwaved rat brain. J Lipid Res 49: 1990–2000. [CrossRef] [PubMed] [Google Scholar]
  • Fessel JP, Porter NA, Moore KP, Sheller JR, Roberts-II LJ. 2002. Discovery of lipid peroxidation products formed in vivo with a substituted tetrahydrofuran ring (isofurans) that are favored by increased oxygen tension. Proc Natl Acad Sci USA 99: 16713–16718. [CrossRef] [PubMed] [Google Scholar]
  • Galano J-M, Mas E, Barden A, et al. 2013. Isoprostanes and neuroprostanes: Total synthesis, biological activity and biomarkers of oxidative stress in humans. Prostagl Other Lipid Med 107: 95–102. [CrossRef] [Google Scholar]
  • Galano J-M, Lee JC-Y, Gladine C, et al. 2015. Non-enzymatic cyclic oxygenated metabolites of adrenic, docosahexaenoic, eicosapentaenoic, a-linolenic acids; bioactivities and potential use a biomarkers. Biochim Biophys Acta 1851: 446–455. [CrossRef] [PubMed] [Google Scholar]
  • Galano J-M, Lee YY, Oger C, et al. 2017. Isoprostanes, neuroprostanes, phytoprostanes. An overview of 25 years of research in chemistry and biology. Prog Lipid Res 68: 83–108. [CrossRef] [PubMed] [Google Scholar]
  • Garcia-Blanco A, Pena-Bautista C, Oger C, et al. 2018. Reliable analytical method to determine new lipid peroxidation biomarkers in urine samples: Application to mild cognitive impairment due to Alzheimer disease. Talanta 184: 193–201. [CrossRef] [PubMed] [Google Scholar]
  • Geng X, Galano J-M, Oger C, Sun GY, Durand T, Lee JC. 2022. Neuroprotective effects of DHA-derived peroxidation product 4(RS)-4-F4t-neuroprostane on microglia. Free Radic Biol Med 185: 1–5. [CrossRef] [PubMed] [Google Scholar]
  • GISSI-Prevenzione Investigators. 1999. Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: Results of the GISSI-Prevenzione trial. Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto miocardico. Lancet 354: 447. [CrossRef] [PubMed] [Google Scholar]
  • Gladine C, Newman JW, Durand T, et al. 2014. Lipid profiling following intake of omega 3 fatty acid DHA identifies the peroxidized metabolites DHA F4-neuroprostanes as the best predictors of atherosclerosis prevention. PLoS ONE 9: e89393. [CrossRef] [PubMed] [Google Scholar]
  • Guy A, Oger C, Heppekausen J, et al. 2014. Oxygenated metabolites of n-3 polyunsaturated fatty acid as potential oxidative stress biomarkers: Total synthesis of 8-F3t-IsoP, 10-F4t-NeuroP, and [D4]-10-F4t-NeuroP. Chem Eur J 20: 6374–6380. [CrossRef] [PubMed] [Google Scholar]
  • Hsieh YP, Lin CL, Shiue AL, et al. 2009. Correlation of F4-neuroprostanes levels in cerebrospinal fluid with outcome of aneurysmal subarachnoid hemorrhage in humans. Free Radic Biol Med 47: 814–824. [CrossRef] [PubMed] [Google Scholar]
  • Imbusch R, Mueller MJ. 2000. Formation of isoprostane F2-like compounds (phytoprostanes F1) from α-linolenic acid in plants. Free Radical Biol Med 28: 720–726. [CrossRef] [Google Scholar]
  • Jahn U, Galano JM, Durand T. 2008. Beyond prostaglandins chemistry and biology of cyclic oxygenated metabolites formed by free-radical pathways from polyunsaturated fatty acids. Angew Chem Int Ed 47: 5894–5951. [CrossRef] [Google Scholar]
  • Judé S, Bedut S, Roger S, et al. 2003. Peroxidation of docosahexaenoic acid is responsible for its effects on ITO and ISS in rat ventricular myocytes. Br J Pharmacol 139: 816. [CrossRef] [PubMed] [Google Scholar]
  • Lacampagne A, Galano J-M, Oger C, et al. Eur Patent (05 April 2022, EP22305460. 2). [Google Scholar]
  • Lacampagne A, Galano J-M, Oger C, et al. Eur Patent (22 November 2022, EP22209466. 6). [Google Scholar]
  • Lee YY, Galano J-M, Oger C, et al. 2016. Lipids 51: 1217–1229. [CrossRef] [PubMed] [Google Scholar]
  • Lee YY, Galano J-M, Leung HH, et al. 2020. Non-enzymatic oxygenated metabolite of docosahexaenoic acid, 4(RS)-4-F4t-neuroprostane, act as bioactive lipid molecule in neuronal cell 2020. FEBS Lett 594: 1797–1808. [CrossRef] [PubMed] [Google Scholar]
  • Le Guennec J-Y, Galano JM, Oger C, et al. Eur Patent (5 December 2012, EP12306519. 3). [Google Scholar]
  • Mas E, Michel F, Guy A, et al. 2008. Quantification of urinary F2-isoprostanes with 4(RS)-F4t-neuroprostane as an internal standard using gas-chromatography mass spectrometry: Application to polytraumatized patients. J Chromatrogr B 10: 5087–5090. [Google Scholar]
  • Michel F, Bonnefont-Rousselot D, Mas E, Drai J, Thérond P. 2008. Biomarkers of lipid peroxidation: Analytical aspects. Ann Biol Clin 66: 605. [PubMed] [Google Scholar]
  • Milne GL, Yin H, Brooks JD, Sanchez S, Roberts II LJ, Morrow JD. 2007. Quantification of F2-isoprostanes in biological fluids and tissues as a measure of oxidant stress. Methods Enzymol 433: 113–126. [CrossRef] [PubMed] [Google Scholar]
  • Moretti E, Signorini C, Noto D, et al. 2023. F4-neuroprostanes effects on human sperm 2023. Int J Mol Sci 24: 935. [CrossRef] [PubMed] [Google Scholar]
  • Morrow JD, Hill KE, Burk RF, Nammour TM, Badr KF, Roberts II LJA. 1990. A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism. Proc Natl Acad Sci USA 87: 9383–9387. [CrossRef] [PubMed] [Google Scholar]
  • Nourooz-Zadeh J, Liu EH, Anggard E, Halliwell B. 1998. F4-isoprostanes: A novel class of prostanoids formed during peroxidation of docosahexaenoic acid (DHA). Biochem Biophys Res Commun 242: 338. [CrossRef] [PubMed] [Google Scholar]
  • Oger C, Brinkmann Y, Bouazzaoui S, Durand T, Galano J-M. 2008. Stereocontrolled access to isoprostanes via a bicyclo[3.3.0]octene framework. Org Lett 10: 5087–5090. [CrossRef] [PubMed] [Google Scholar]
  • Oger C, Marton Z, Brinkmann Y, et al. 2010a. New insight in lipase-catalyzed regioselective monoacetylation of unsymmetrical 1,5-primary diols. J Org Chem 75: 1892–1897. [CrossRef] [PubMed] [Google Scholar]
  • Oger C, Bultel-Poncé V, Guy A, et al. 2010b. The handy use of Brown’s catalyst for a skipped diyne deuteration: Application to the synthesis of a d4-labeled-F4t-neuroprostane. Chem Eur J 16: 13976–13980. [CrossRef] [Google Scholar]
  • Oger C, Bultel-Poncé V, Guy A, Durand T, Galano J-M. 2012. Total synthesis of isoprostanes derived from AdA and EPA. Eur J Org Chem 2012: 2621–2634. [CrossRef] [Google Scholar]
  • Peña-Bautista C, Vigor C, Galano J-M, et al. 2019. New screening approach for Alzheimer’s disease risk assessment from urine lipid peroxidation compounds. Sci Rep 9: 14244. [CrossRef] [PubMed] [Google Scholar]
  • Roberts II LJ, Montine TJ, Markesbery WR, et al. 1998. Formation of isoprostane-like compounds (neuroprostanes) in vivo from docosahexaenoic acid. J Biol Chem 273: 13605–13612. [CrossRef] [PubMed] [Google Scholar]
  • Roy J, Oger C, Thireau J, et al. 2015. Nonenzymatic lipid mediators neuroprostanes exert the anti-arrhythmic properties of docosahexenoic acid. Free Radic Biol Med 86: 269–278. [CrossRef] [PubMed] [Google Scholar]
  • Roy J, Fauconnier J, Oger C, et al. 2017. Non-enzymatic oxidized metabolite of DHA, 4(RS)-4-F4t neuroprostane protects the heart against reperfusion injuries. Free Radic Biol Med 102: 229–239. [CrossRef] [PubMed] [Google Scholar]
  • Rund KM, Ostermann AI, Kutzner L, et al. 2018. Development of an LC-(ESI-)-MS/MS method for the simultaneous quantification of 35 isoprostanes and isofurans derived from the major n3 and n6 PUFA. Anal Chim Acta 1037: 63–74. [CrossRef] [PubMed] [Google Scholar]
  • Sánchez-Illana Á, Thayyil S, Montaldo P, et al. 2017. Novel free-radical mediated lipid peroxidation biomarkers in newborn plasma. Anal Chim Acta 996: 88–97. [CrossRef] [PubMed] [Google Scholar]
  • Signorini C, De Felice C, Durand T, et al. 2018. Relevance of 4-F4t-neuroprostane and 10-F4t-neuroprostane to neurological diseases. Free Radic Biol Med 115: 278–287. [CrossRef] [PubMed] [Google Scholar]
  • Signorini C, Cardile V, Pannuzzo G, et al. 2019. Increased isoprostanoid levels in brain from murine model of Krabbe disease – Relevance of isoprostanes, dihomo-isoprostanes and neuroprostanes to disease severity. Free Radic Biol Med 139: 46–54. [CrossRef] [PubMed] [Google Scholar]
  • Signorini C, Moretti E, Noto D, et al. 2021. F4-neuroprostanes: A role in sperm capacitation. Life 11: 655. [CrossRef] [PubMed] [Google Scholar]
  • Signorini C, De Felice C, Durand T, et al. 2022. Isoprostanoid plasma levels are relevant to cerebral adrenoleukodystrophy disease. Life 12: 146. [CrossRef] [PubMed] [Google Scholar]
  • Stafforini DM, Sheller JR, Blackwell TS, et al. 2006. Release of free F2-isoprostanes from esterified phospholipids is catalyzed by intracellular and plasma platelet-activating factor acetylhydrolases. J Biol Chem 281: 4616–4623. [CrossRef] [PubMed] [Google Scholar]
  • Song W-L, Lawson JA, Reilly D, et al. 2008. Neurofurans, novel indices of oxidant stress derived from docosahexaenoic acid. J Biol Chem 283: 6–16. [CrossRef] [PubMed] [Google Scholar]
  • VanRollins M, Woltjer RL, Yin H, Morrow JD, Montine TJ. 2008. F2-dihomo-isoprostanes arise from free radical attack on adrenic acid. J Lipid Res 49: 995. [CrossRef] [PubMed] [Google Scholar]
  • Vigor C, Bertrand-Michel J, Pinot E, et al. 2014. Non-enzymatic lipid oxidation products in biological systems: Assessment of the metabolites from polyunsaturated fatty acids. J Chromatogr B 964: 65–78. [CrossRef] [Google Scholar]
  • Vigor C, Balas L, Guy A, et al. 2022. Isoprostanoids, isofuranoids and isoketals – From synthesis to lipidomics. Eur J Org Chem 22: e202101523. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.