Open Access
Volume 30, 2023
Article Number 10
Number of page(s) 8
Section Nutrition - Health
Published online 08 June 2023
  • Ahmed OS, Galano J-M, Pavlickova T, et al. 2020. Moving forward with isoprostanes, neuroprostanes and phytoprostanes – Where are we know? Essays Biochem 64: 463–484. [CrossRef] [PubMed] [Google Scholar]
  • Andersson DC, Marks AR. 2010. Fixing ryanodine receptor Ca2+ leak – A novel therapeutic strategy for contractile failure in heart and skeletal muscle. Drug Discov Today: Dis Mech 7: e151–e157. [CrossRef] [Google Scholar]
  • Barden A, Beilin LJ, Ritchie J, Croft KD, Walters BN, Michael CA. 1996. Plasma and urinary 8 isoprostane as an indicator of lipid peroxidation in preeclampsia and normal pregnancy. Clin Sci (Lond) 91: 711–718. [CrossRef] [PubMed] [Google Scholar]
  • Barden AE, Mori TA, Dunstan JA, et al. 2004. Fish oil supplementation in pregnancy lowers F2-isoprostanes in neonates at high risk of atopy. Free Radic Res 38: 233–239. [CrossRef] [PubMed] [Google Scholar]
  • Barden AE, Corcoran TB, Mas E, et al. 2012. Are isofurans and neuroprostanes increased after aneurysmal subarachnoid hemorrhage and traumatic brain injury? Antioxid Redox Signal 16: 165–169. [CrossRef] [PubMed] [Google Scholar]
  • Bosviel R, Joumard-Cubizolles L, Chinetti-Gbaguidi G, et al. 2017. DHA-derived oxylipins, neuroprostanes and protectins, differentially and dose-dependently modulate the inflammatory response in human macrophages: Putative mechanisms through PPAR activation. Free Radic Biol Med 103: 146–154. [CrossRef] [PubMed] [Google Scholar]
  • Brinkmann Y, Oger C, Guy A, Durand T, Galano JM. 2010. Total synthesis of 15-D2t- and 15-E2t-isoprostanes. J Org Chem 75: 2411–2414. [CrossRef] [PubMed] [Google Scholar]
  • Cascant-Vilaplana MM, Sánchez-Illana Á, Piñeiro-Ramos JD, et al. 2021. Do levels of lipid peroxidation biomarkers reflect the degree of brain injury in newborns? Antiox Redox Signal 37: 1467–1475. [CrossRef] [PubMed] [Google Scholar]
  • Collado-Gonzales J, Medina S, Durand T, et al. 2015. New UPLC-QqQ-MS/MS method for quantitative and qualitative determination of 10 phytoprostanes in foodstuffs in commercial olive and sunflower oils. Food Chem 178: 212–220. [CrossRef] [PubMed] [Google Scholar]
  • Corcoran TB, Mas E, Barden AE, et al. 2011. Are isofurans and neuroprostanes increased after aneurysmal subarachnoid hemorrhage and traumatic brain injury? Antioxid Redox Signal 15: 2663–2667. [CrossRef] [PubMed] [Google Scholar]
  • Cortelazzo A, De Felice C, Guerranti R, et al. 2016. Abnormal N-glycosylation pattern of brain nucleotide pyrophosphatase-5 (NPP-5) in Mecp2-mutant murine models of Rett syndrome. Neurosc Res 105: 28–34. [CrossRef] [Google Scholar]
  • De Felice C, Signorini C, Durand T, et al. 2011. Dihomo-isoprostanes as potential early biomarkers of lipid oxidative damage in Rett syndrome 2011. J Lipid Res 52: 2287. [CrossRef] [PubMed] [Google Scholar]
  • De Felice C, Signorini C, Leoncini S, et al. 2012. The role of oxidative stress in Rett syndrome: An overview. Ann NY Acad Sci 1259: 121–135. [CrossRef] [Google Scholar]
  • De La Torre A, Lee YY, Oger C, et al. 2014. Synthesis, discovery and quantitation of dihomo-isofurans: Novel biomarkers of in vivo adrenic acid peroxidation. Angew Chem Int Ed 53: 6249–6252. [CrossRef] [Google Scholar]
  • De La Torre A, Lee YY, Mazzoni A, et al. 2015. Total syntheses and in vivo quantitation of novel neurofuran and dihomo-isofuran derived from docosahexaenoic acid and adrenic acid. Chem Eur J 21: 2442–2446. [CrossRef] [Google Scholar]
  • Dupuy A, Le Faouder P, Vigor C, et al. 2016. Simultaneous quantitative profiling of 20 isoprostanoids from omega-3 and omega-6 polyunsaturated fatty acids by LC-MS/MS in various biological samples. Anal Chim Acta 921: 46–58. [CrossRef] [PubMed] [Google Scholar]
  • Farias SE, Basselin M, Chang L, Heidenreich KA, Rapoport SI, Murphy RC. 2008. Formation of eicosanoids, E2/D2 isoprostanes, and docosanoids following decapitation-induced ischemia, measured in high-energy-microwaved rat brain. J Lipid Res 49: 1990–2000. [CrossRef] [PubMed] [Google Scholar]
  • Fessel JP, Porter NA, Moore KP, Sheller JR, Roberts-II LJ. 2002. Discovery of lipid peroxidation products formed in vivo with a substituted tetrahydrofuran ring (isofurans) that are favored by increased oxygen tension. Proc Natl Acad Sci USA 99: 16713–16718. [CrossRef] [PubMed] [Google Scholar]
  • Galano J-M, Mas E, Barden A, et al. 2013. Isoprostanes and neuroprostanes: Total synthesis, biological activity and biomarkers of oxidative stress in humans. Prostagl Other Lipid Med 107: 95–102. [CrossRef] [Google Scholar]
  • Galano J-M, Lee JC-Y, Gladine C, et al. 2015. Non-enzymatic cyclic oxygenated metabolites of adrenic, docosahexaenoic, eicosapentaenoic, a-linolenic acids; bioactivities and potential use a biomarkers. Biochim Biophys Acta 1851: 446–455. [CrossRef] [PubMed] [Google Scholar]
  • Galano J-M, Lee YY, Oger C, et al. 2017. Isoprostanes, neuroprostanes, phytoprostanes. An overview of 25 years of research in chemistry and biology. Prog Lipid Res 68: 83–108. [CrossRef] [PubMed] [Google Scholar]
  • Garcia-Blanco A, Pena-Bautista C, Oger C, et al. 2018. Reliable analytical method to determine new lipid peroxidation biomarkers in urine samples: Application to mild cognitive impairment due to Alzheimer disease. Talanta 184: 193–201. [CrossRef] [PubMed] [Google Scholar]
  • Geng X, Galano J-M, Oger C, Sun GY, Durand T, Lee JC. 2022. Neuroprotective effects of DHA-derived peroxidation product 4(RS)-4-F4t-neuroprostane on microglia. Free Radic Biol Med 185: 1–5. [CrossRef] [PubMed] [Google Scholar]
  • GISSI-Prevenzione Investigators. 1999. Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: Results of the GISSI-Prevenzione trial. Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto miocardico. Lancet 354: 447. [CrossRef] [PubMed] [Google Scholar]
  • Gladine C, Newman JW, Durand T, et al. 2014. Lipid profiling following intake of omega 3 fatty acid DHA identifies the peroxidized metabolites DHA F4-neuroprostanes as the best predictors of atherosclerosis prevention. PLoS ONE 9: e89393. [CrossRef] [PubMed] [Google Scholar]
  • Guy A, Oger C, Heppekausen J, et al. 2014. Oxygenated metabolites of n-3 polyunsaturated fatty acid as potential oxidative stress biomarkers: Total synthesis of 8-F3t-IsoP, 10-F4t-NeuroP, and [D4]-10-F4t-NeuroP. Chem Eur J 20: 6374–6380. [CrossRef] [PubMed] [Google Scholar]
  • Hsieh YP, Lin CL, Shiue AL, et al. 2009. Correlation of F4-neuroprostanes levels in cerebrospinal fluid with outcome of aneurysmal subarachnoid hemorrhage in humans. Free Radic Biol Med 47: 814–824. [CrossRef] [PubMed] [Google Scholar]
  • Imbusch R, Mueller MJ. 2000. Formation of isoprostane F2-like compounds (phytoprostanes F1) from α-linolenic acid in plants. Free Radical Biol Med 28: 720–726. [CrossRef] [Google Scholar]
  • Jahn U, Galano JM, Durand T. 2008. Beyond prostaglandins chemistry and biology of cyclic oxygenated metabolites formed by free-radical pathways from polyunsaturated fatty acids. Angew Chem Int Ed 47: 5894–5951. [CrossRef] [Google Scholar]
  • Judé S, Bedut S, Roger S, et al. 2003. Peroxidation of docosahexaenoic acid is responsible for its effects on ITO and ISS in rat ventricular myocytes. Br J Pharmacol 139: 816. [CrossRef] [PubMed] [Google Scholar]
  • Lacampagne A, Galano J-M, Oger C, et al. Eur Patent (05 April 2022, EP22305460. 2). [Google Scholar]
  • Lacampagne A, Galano J-M, Oger C, et al. Eur Patent (22 November 2022, EP22209466. 6). [Google Scholar]
  • Lee YY, Galano J-M, Oger C, et al. 2016. Lipids 51: 1217–1229. [CrossRef] [PubMed] [Google Scholar]
  • Lee YY, Galano J-M, Leung HH, et al. 2020. Non-enzymatic oxygenated metabolite of docosahexaenoic acid, 4(RS)-4-F4t-neuroprostane, act as bioactive lipid molecule in neuronal cell 2020. FEBS Lett 594: 1797–1808. [CrossRef] [PubMed] [Google Scholar]
  • Le Guennec J-Y, Galano JM, Oger C, et al. Eur Patent (5 December 2012, EP12306519. 3). [Google Scholar]
  • Mas E, Michel F, Guy A, et al. 2008. Quantification of urinary F2-isoprostanes with 4(RS)-F4t-neuroprostane as an internal standard using gas-chromatography mass spectrometry: Application to polytraumatized patients. J Chromatrogr B 10: 5087–5090. [Google Scholar]
  • Michel F, Bonnefont-Rousselot D, Mas E, Drai J, Thérond P. 2008. Biomarkers of lipid peroxidation: Analytical aspects. Ann Biol Clin 66: 605. [PubMed] [Google Scholar]
  • Milne GL, Yin H, Brooks JD, Sanchez S, Roberts II LJ, Morrow JD. 2007. Quantification of F2-isoprostanes in biological fluids and tissues as a measure of oxidant stress. Methods Enzymol 433: 113–126. [CrossRef] [PubMed] [Google Scholar]
  • Moretti E, Signorini C, Noto D, et al. 2023. F4-neuroprostanes effects on human sperm 2023. Int J Mol Sci 24: 935. [CrossRef] [PubMed] [Google Scholar]
  • Morrow JD, Hill KE, Burk RF, Nammour TM, Badr KF, Roberts II LJA. 1990. A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism. Proc Natl Acad Sci USA 87: 9383–9387. [CrossRef] [PubMed] [Google Scholar]
  • Nourooz-Zadeh J, Liu EH, Anggard E, Halliwell B. 1998. F4-isoprostanes: A novel class of prostanoids formed during peroxidation of docosahexaenoic acid (DHA). Biochem Biophys Res Commun 242: 338. [CrossRef] [PubMed] [Google Scholar]
  • Oger C, Brinkmann Y, Bouazzaoui S, Durand T, Galano J-M. 2008. Stereocontrolled access to isoprostanes via a bicyclo[3.3.0]octene framework. Org Lett 10: 5087–5090. [CrossRef] [PubMed] [Google Scholar]
  • Oger C, Marton Z, Brinkmann Y, et al. 2010a. New insight in lipase-catalyzed regioselective monoacetylation of unsymmetrical 1,5-primary diols. J Org Chem 75: 1892–1897. [CrossRef] [PubMed] [Google Scholar]
  • Oger C, Bultel-Poncé V, Guy A, et al. 2010b. The handy use of Brown’s catalyst for a skipped diyne deuteration: Application to the synthesis of a d4-labeled-F4t-neuroprostane. Chem Eur J 16: 13976–13980. [CrossRef] [Google Scholar]
  • Oger C, Bultel-Poncé V, Guy A, Durand T, Galano J-M. 2012. Total synthesis of isoprostanes derived from AdA and EPA. Eur J Org Chem 2012: 2621–2634. [CrossRef] [Google Scholar]
  • Peña-Bautista C, Vigor C, Galano J-M, et al. 2019. New screening approach for Alzheimer’s disease risk assessment from urine lipid peroxidation compounds. Sci Rep 9: 14244. [CrossRef] [PubMed] [Google Scholar]
  • Roberts II LJ, Montine TJ, Markesbery WR, et al. 1998. Formation of isoprostane-like compounds (neuroprostanes) in vivo from docosahexaenoic acid. J Biol Chem 273: 13605–13612. [CrossRef] [PubMed] [Google Scholar]
  • Roy J, Oger C, Thireau J, et al. 2015. Nonenzymatic lipid mediators neuroprostanes exert the anti-arrhythmic properties of docosahexenoic acid. Free Radic Biol Med 86: 269–278. [CrossRef] [PubMed] [Google Scholar]
  • Roy J, Fauconnier J, Oger C, et al. 2017. Non-enzymatic oxidized metabolite of DHA, 4(RS)-4-F4t neuroprostane protects the heart against reperfusion injuries. Free Radic Biol Med 102: 229–239. [CrossRef] [PubMed] [Google Scholar]
  • Rund KM, Ostermann AI, Kutzner L, et al. 2018. Development of an LC-(ESI-)-MS/MS method for the simultaneous quantification of 35 isoprostanes and isofurans derived from the major n3 and n6 PUFA. Anal Chim Acta 1037: 63–74. [CrossRef] [PubMed] [Google Scholar]
  • Sánchez-Illana Á, Thayyil S, Montaldo P, et al. 2017. Novel free-radical mediated lipid peroxidation biomarkers in newborn plasma. Anal Chim Acta 996: 88–97. [CrossRef] [PubMed] [Google Scholar]
  • Signorini C, De Felice C, Durand T, et al. 2018. Relevance of 4-F4t-neuroprostane and 10-F4t-neuroprostane to neurological diseases. Free Radic Biol Med 115: 278–287. [CrossRef] [PubMed] [Google Scholar]
  • Signorini C, Cardile V, Pannuzzo G, et al. 2019. Increased isoprostanoid levels in brain from murine model of Krabbe disease – Relevance of isoprostanes, dihomo-isoprostanes and neuroprostanes to disease severity. Free Radic Biol Med 139: 46–54. [CrossRef] [PubMed] [Google Scholar]
  • Signorini C, Moretti E, Noto D, et al. 2021. F4-neuroprostanes: A role in sperm capacitation. Life 11: 655. [CrossRef] [PubMed] [Google Scholar]
  • Signorini C, De Felice C, Durand T, et al. 2022. Isoprostanoid plasma levels are relevant to cerebral adrenoleukodystrophy disease. Life 12: 146. [CrossRef] [PubMed] [Google Scholar]
  • Stafforini DM, Sheller JR, Blackwell TS, et al. 2006. Release of free F2-isoprostanes from esterified phospholipids is catalyzed by intracellular and plasma platelet-activating factor acetylhydrolases. J Biol Chem 281: 4616–4623. [CrossRef] [PubMed] [Google Scholar]
  • Song W-L, Lawson JA, Reilly D, et al. 2008. Neurofurans, novel indices of oxidant stress derived from docosahexaenoic acid. J Biol Chem 283: 6–16. [CrossRef] [PubMed] [Google Scholar]
  • VanRollins M, Woltjer RL, Yin H, Morrow JD, Montine TJ. 2008. F2-dihomo-isoprostanes arise from free radical attack on adrenic acid. J Lipid Res 49: 995. [CrossRef] [PubMed] [Google Scholar]
  • Vigor C, Bertrand-Michel J, Pinot E, et al. 2014. Non-enzymatic lipid oxidation products in biological systems: Assessment of the metabolites from polyunsaturated fatty acids. J Chromatogr B 964: 65–78. [CrossRef] [Google Scholar]
  • Vigor C, Balas L, Guy A, et al. 2022. Isoprostanoids, isofuranoids and isoketals – From synthesis to lipidomics. Eur J Org Chem 22: e202101523. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.