Numéro
OCL
Volume 32, 2025
Diversity of Plant Proteins extracted from Oil & Protein Crop / Diversité des protéines végétales issues des oléoprotéagineux
Numéro d'article 29
Nombre de pages 9
DOI https://doi.org/10.1051/ocl/2025020
Publié en ligne 9 septembre 2025
  • Abe A, Kosugi S, Yoshida K, et al. 2012. Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 30: 174–178. [Google Scholar]
  • Aider M, Barbana C. 2011. Canola proteins: composition, extraction, functional properties, bioactivity, applications as a food ingredient and allergenicity—a practical and critical review. Trends Food Sci Technol 22: 21–39. [Google Scholar]
  • Altenbach SB, Kuo CC, Staraci LC, et al. 1992. Accumulation of a Brazil nut albumin in seeds of transgenic canola results in enhanced levels of seed protein methionine. Plant Mol Biol 18: 235–245. [Google Scholar]
  • Beisson F, Koo AJK, Ruuska S, Schwender J. 2003. Arabidopsis genes involved in acyl lipid metabolism. A 2003 census of the candidates, a study of the distribution of expressed sequence tags in organs, and a web-based database. Plant Physiol 132: 681–697. [Google Scholar]
  • Bérot S, Compoint JP, Larré C, Malabat C, Guéguen J. 2005. Large scale purification of rapeseed proteins (Brassica napus L.). J Chromatogr B 818: 35–42. [Google Scholar]
  • Bolger ME, Weisshaar B, Scholz U, Stein N, Usadel B, Mayer KF. 2014. Plant genome sequencing—applications for crop improvement. Curr Opin Biotechnol 26: 31–37. [Google Scholar]
  • Bouchet AS, Nesi N, Bissuel C, et al. 2014. Genetic control of yield and yield components in winter oilseed rape (Brassica napus L.) grown under nitrogen limitation. Euphytica 199: 183–205. [Google Scholar]
  • Cantu D, Pearce S, Distelfeld A, et al. 2011. Effect of the down-regulation of the high grain protein content (GPC) genes on the wheat transcriptome during monocarpic senescence. BMC Genomics 12: 492. [Google Scholar]
  • Carré P, Quinsac A, Citeau M, Fine F 2014. A re-examination of the technical feasibility and economic viability of rapeseed dehulling. OCL 22: D304. [Google Scholar]
  • Carré P, Citeau M, Robin G, Estorges M. 2016. Hull content and chemical composition of whole seeds, hulls and germs in cultivars of rapeseed (Brassica napus). OCL 23: A302. [CrossRef] [EDP Sciences] [Google Scholar]
  • Carré P. 2021. Reinventing the oilseeds processing to extract oil while preserving the protein. OCL 28: 13. [CrossRef] [EDP Sciences] [Google Scholar]
  • Fleddermann M. Fechner A, Rößler A. 2013. Nutritional evaluation of rapeseed protein compared to soy protein for quality, plasma amino acids, and nitrogen balance − a randomized cross-over intervention study in humans. Clin Nutr 32: 519–526. [Google Scholar]
  • Chalhoub B, Denoeud F, Liu S, et al. 2014. Early allopolyploid evolution in the post-neolithic Brassica napus oilseed genome. Science 345: 950–953. [Google Scholar]
  • Chmielewska A, Kozłowska M, Rachwał D, Wnukowski P, Amarowicz R, Nebesny E, Rosicka-Kaczmarek J. 2021. Canola/rapeseed protein-nutritional value, functionality and food application: a review. Crit Rev Food Sci Nutr 61: 3836–3856. [Google Scholar]
  • Crouch ML, Sussex IM. 1981. Development and storage-protein synthesis in Brassica napus L. embryos in vivo and in vitro. Planta 153: 64–74. [Google Scholar]
  • Cui Q, Ni X, Zeng L, et al. 2017. Optimization of protein extraction and decoloration conditions for tea residues. Hortic Plant J 3: 172–176. [Google Scholar]
  • Delourme R, Laperche A, Bouchet AS, et al. 2018. Genes and quantitative trait loci mapping for major agronomic traits in Brassica napus L. In: Liu S, Snowdon R, Chalhoub B. (eds) The Brassica napus Genome. 41–85. [Google Scholar]
  • Dimov Z, Suprianto E, Hermann F, Möllers C. 2012. Genetic variation for seed hull and fibre content in a collection of European winter oilseed rape material (Brassica napus L.) and development of NIRS calibrations: fibre content of oilseed rape. Plant Breed 131: 361–368. [CrossRef] [Google Scholar]
  • Dong XY, Guo LL, Wei F. 2011. Some characteristics and functional properties of rapeseed protein prepared by ultrasonication, ultrafiltration and isoelectric precipitation. J Sci Food Agric 91: 1488–1498. [Google Scholar]
  • Eapen KE, Tape NW, Sims RPA. 1969. New process for the production of better quality rapeseed oil and meal: II. Detoxification and dehulling of rapeseeds—feasibility study. J Amer Oil Chem Soc. 46: 52–55. [Google Scholar]
  • Fetzer A, Herfellner T, Stäbler A, Menner M, Eisner P. 2018. Influence of process conditions during aqueous protein extraction upon yield from pre-pressed and cold-pressed rapeseed press cake. Ind Crops Prod 112: 236–246. [Google Scholar]
  • Fetzer A, Müller K, Schmid M, Eisner P. 2020. Rapeseed proteins for technical applications: Processing, isolation, modification and functional properties − a review. Ind Crop Prod 158: 112986. [Google Scholar]
  • Grami B, Stefansson BR. 1977. Gene action for protein and oil content in summer rape. Can J Plant Sci 57: 625–631. [Google Scholar]
  • Guerche P, Dealmeida ERP, Schwarztein MA, Gander E, Krebbers E, Pelletier G. 1990. Expression of the 2S albumin from Bertholletia excelsa in Brassica napus. Mol Gen Genet 221: 306–314. [Google Scholar]
  • Hald C, Dawid C, Tressel R, Hofmann T. 2018. Kaempferol 3-O-(2‴-O-Sinapoyl-β-sophoroside) causes the undesired bitter taste of canola/rapeseed protein isolates. J Sci Food Agric 67: 372–378. [Google Scholar]
  • Hartwig B, James GV, Konrad K, Schneeberger K, Turck F. 2012. Fast isogenic mapping-by-sequencing of ethyl methanesulfonate-induced mutant bulks. Plant Physiol 160: 591–600. [Google Scholar]
  • Hewage A, Odunayo Olatunde O, Nimalaratne C, Malalgoda M, Aluko RE, Bandara N, et al. 2022. Novel extraction technologies for developing plant protein ingredients with improved functionality. Trends Food Sci Techn 129: 492–511. [Google Scholar]
  • Hobbs, DH, Flintham, JE, Hills MJ. 2004. Genetic control of storage oil synthesis in seeds of Arabidopsis. Plant Physiol 136 3341–3349. [Google Scholar]
  • Höglund AS, Rödin J, Larsson E, Rask L. 1992. Distribution of napin and cruciferin in developing rapeseed embryo. Plant Physiol 98: 509–15. [Google Scholar]
  • Ikebudu JA, Sokhansanj S, Tyler RT, Milne BJ, Thakor NS. 2000. Grain conditioning for dehulling of canola. Can Agric Eng 42: 27–32 [Google Scholar]
  • Ismail F, Vaisey-Genser M, Fyfe B. 1981. Bitterness and astringency of sinapine and its components. J Food Sci 46: 1241–1244. [Google Scholar]
  • Jasinski S, Chardon F, Nesi N, Lécureuil A, Guerche P. 2018. Improving seed oil and protein content in Brassicaceae: some new genetic insights from Arabidopsis thaliana. OCL 25: D603. [Google Scholar]
  • Jolivet P, Boulard C, Bellamy A, et al. 2009. Protein composition of oil bodies from mature Brassica napus seeds. Proteomics 9: 3268–3284. [Google Scholar]
  • Jolivet P, Deruyffelaere C, Boulard C, et al. 2013. Deciphering the structural organization of the oil bodies in the Brassica napus seed as a mean to improve the oil extraction yield. Ind Crops Prod 44: 549–557. [Google Scholar]
  • Kohno-Murase J, Murase M, Ichikawa H, Imamura J. 1995. Improvement in the quality of seed storage protein by transformation of Brassica napus with an antisense gene for cruciferin. Theor Appl Genet 91: 627–631. [Google Scholar]
  • Kozlowska H, Naczk M, Shahidi F, Zadernowski R. 1990. Phenolic acids and tannins in rapeseed and canola. In: Shahidi F (ed) Canola and Rapeseed. 193–210. [Google Scholar]
  • Krzymanski J. 1998. Agronomy of oilseed brassicas. Acta Horticulturae 459: 55–60. [Google Scholar]
  • Lecureuil A, Corso M, Boutet S, et al. 2024. Innovative mutant screening identifies TRANSPARENT TESTA7 as a player in seed oil/protein partitioning. bioRxiv 11.18.624101. [Google Scholar]
  • Li C., Shi D., Stone A.K., Wang Y., Wanasundara J.P., Tanaka T., & Nickerson M.T. (2023). Effect of solid-state fermentation on select antinutrients and protein digestibility of cold-pressed and hexane-extracted canola meals. J Am Oil Chem Soc 100: 529–538. [Google Scholar]
  • Mahmood T, Rahman MH, Stringam GR, Yeh F, Good AG. 2006. Identification of quantitative trait loci (QTL) for oil and protein contents and their relationships with other seed quality traits in Brassica juncea. Theoret Appl Genet 113: 1211–1220. [Google Scholar]
  • Malabat C, Sanchez-Vioque R, Rabiller C, Gueguen J. 2001. Emulsifying and foaming properties of native and chemically modified peptides from the 2S and 12S proteins of rapeseed (Brassica napus L.). J Amer Oil Chem Soc 78: 235–242 [Google Scholar]
  • Malabat C, Atterby H, Chaudhry Q, Renard M, Guéguen J. 2003. Genetic variability of rapeseed protein composition, in: Sorensen H, Sorensen J C, Sorensen S, Bellostas Muguerza N, Bjergegaard C (Eds.), 11th International Rapeseed Congress −Enhanced Value of Cruciferous Oilseed Crops by Optimal Production and Use of the High Quality Seed Components, Copenhagen, pp. 205–208. [Google Scholar]
  • Matthäus B. 1998. Effect of dehulling on the composition of antinutritive compounds in various cultivars of rapeseed. Fett/Lipid 100: 295–301. [Google Scholar]
  • Mascher M, Jost M, Kuon J-E, et al. 2014. Mapping-by-sequencing accelerates forward genetics in barley. Genome Biol 15: 1–15. [CrossRef] [Google Scholar]
  • Naczk M, Amarowiczb R, Shahidic F. 1998. Role of phenolics in flavor of rapeseed protein products. Dev Food Sci 40: 597–613 [Google Scholar]
  • Nesi N, Delourme R, Brégeon M, Falentin C, Renard M. 2008. Genetic and molecular approaches to improve nutritional value of Brassica napus L. seed. C. R. Biologies 331: 763–771 [Google Scholar]
  • Ohlson R, Anjou K. 1979. Rapeseed protein products. J Am Oil Chem Soc 56: 431–437 [Google Scholar]
  • O’Neill CM, Gill S, Hobbs D, Morgan C, Bancroft I. 2003. Natural variation for seed lipid traits in Arabidopsis thaliana. Phytochemistry 64: 1077–1090 [Google Scholar]
  • O’Neill CM, Morgan C, Hattori C, et al. 2012. Towards the genetic architecture of seed lipid biosynthesis and accumulation in Arabidopsis thaliana. Heredity 108: 115–123. [Google Scholar]
  • Padilla G, Cartea M.E., Velasco P, de Haro A, Ordás A . 2007 Variation of glucosinolates in vegetable crops of Brassica rapa. Phytochemistry. 68: 536–545. [Google Scholar]
  • Partridge IG, Low AG, Matte JJ. 1987 Double-low rapeseed meal for pigs: ileal apparent digestibility of amino acids in diets containing various proportions of rapeseed meal, fish meal and soya-bean meal. Animal Science 44.3: 415–42 [Google Scholar]
  • Perera SP, McIntosh TC, Wanasundara JP. 2016. Structural properties of cruciferin and napin of Brassica napus (canola) show distinct responses to changes in pH and temperature. Plants 5: 36. [Google Scholar]
  • Popović S, Hromiš N, Šuput D, Bulut S, Romanić R, Lazić V. 2020. Valorization of by-products from the production of pressed edible oils to produce biopolymer films. In M.F. Ramadan (Ed.), Cold pressed oils, Chapter 3: 15-30. Academic Press. [Google Scholar]
  • Purkrtova Z, Jolivet P, Miquel M, Chardot T. 2008. Structure and function of seed lipid body-associated proteins. Compt Rendus Biolog 331: 746–754. [Google Scholar]
  • Qian L, Qian W, Snowdon RJ, et al. 2016. Genome-wide identification of genes associated with rapeseed protein content and their network analysis. BMC Genomics 17: 1–12. [Google Scholar]
  • Rass M, Schein C. 2010 Utilization of hulled rape seed. Patent EP2475267B1. [Google Scholar]
  • Ries D, Holtgräwe D, Viehöver P, Weisshaar B. 2016. Rapid gene identification in sugar beet using deep sequencing of DNA from phenotypic pools selected from breeding panels. BMC Genomics 17: 1–13. [Google Scholar]
  • Rincent R, Charpentier JP, Faivre-Rampant P, et al. 2018. Phenomic selection is a low-cost and high-throughput method based on indirect predictions: proof of concept on wheat and poplar. G38: 3961–3972 [Google Scholar]
  • Roscher-Ehrig L, Weber SE, Abbadi A, et al. 2024. Phenomic selection for hybrid rapeseed breeding. Plant Phenomics 6: 0215. [Google Scholar]
  • Ruuska, SA, Girke T, Benning C, Ohlrogge JB. 2002. Contrapuntal networks of gene expression during Arabidopsis seed filling. Plant Cell 14: 1191–1206. [Google Scholar]
  • Schatzki J, Ecke W, Becker HC, Möllers C. 2014. Mapping of QTL for the seed storage proteins cruciferin and napin in a winter oilseed rape doubled haploid population and their inheritance in relation to other seed traits. Theor Appl Genet 127: 1213–1223. [CrossRef] [PubMed] [Google Scholar]
  • Schilbert HM, Glover BJ. 2022. Analysis of flavonol regulator evolution in the Brassicaceae reveals MYB12, MYB111 and MYB21 duplications and MYB11 and MYB24 gene loss. BMC Genomics 23: 604. [Google Scholar]
  • Schilbert HM, Busche M, Sáez V, Angeli A, Weisshaar W, Martens S, Stracke R. 2024. Generation and characterisation of an Arabidopsis thaliana f3h/fls1/ans triple mutant that accumulates eriodictyol derivatives. BMC Plant Biol 24: 99. [Google Scholar]
  • Schneeberger K, Ossowski S, Lanz C, et al. 2009. SHOREmap: simultaneous mapping and mutation identification by deep sequencing. Nature Meth 6: 550–551. [Google Scholar]
  • Schneeberger K, Weigel D. 2011. Fast-forward genetics enabled by new sequencing technologies. Trends Plant Sci 16: 282–288. [Google Scholar]
  • Simbaya J, Slominski BA, Rakow G, Campbell LD, Downey RK, Bell JM. 1995. Quality characteristics of yellow-seeded Brassica seed meals: Protein, carbohydrate, and dietary fiber components. J Agric Food Chem 43: 2062–2066. [Google Scholar]
  • Sosulski F. 1979. Organoleptic and nutritional effects of phenolic compounds on oilseed protein products: a review. J Am Oil Chem Soc 56: 711–715. [Google Scholar]
  • Toutirais I, Walrand S, Vayssec C. 2024 Are oilseeds a new alternative protein source for human nutrition? Food Funct., 15, 2366–2380 [Google Scholar]
  • United Nations, 2024. https://population.un.org/wpp/assets/Excel%20Files/1_Indicator%20(Standard)/EXCEL_FILES/1_General/WPP2024_GEN_F01_DEMOGRAPHIC_INDICATORS_COMPACT.xlsx [Google Scholar]
  • Walser C, Spaccasassi A, Gradl K, et al. 2024. Human sensory, taste receptor, and quantitation studies on kaempferol glycosides derived from rapeseed/canola protein isolates. J Agricult Food Chem. 72: 14830–14843 [Google Scholar]
  • Wanasundara JPD. 2011. Proteins of Brassicaceae oilseeds and their potential as a plant protein source. Crit Rev Food Sci Nutr 51: 635–677. [Google Scholar]
  • Wanasundara JP, Tan S, Alashi AM, Pudel F, Blanchard C. 2017. Proteins from canola/rapeseed: current status. In: Nadathur SR, Wanasundara JPD, Scanlin L (eds.) Sustainable protein sources. Chapter 18 Academic Press, pp. 285–304. [Google Scholar]
  • Wanasundara JP, McIntosh T.C., Mupondwa E. 2017 Protein Products from Canola. 1–6, Academic Press. [Google Scholar]
  • Wittkop B, Snowdon RJ, Friedt W. 2009. Status and perspectives of breeding for enhanced yield and quality of oilseed crops for Europe. Euphytica 170: 131–140. [Google Scholar]
  • Wongsirichot P, Gonzalez-Miquel M, Winterburn J. 2024. Rapeseed meal biorefining: Fractionation, valorization and integration approaches. Biocatal Agric Biotechnol 62: 103460. [Google Scholar]
  • Zhang Z, He S, Liu H. et al. 2020. Effect of pH regulation on the components and functional properties of proteins isolated from cold-pressed rapeseed meal through alkaline extraction and acid precipitation. Food Chem 327: 126998. [Google Scholar]
  • Zhao J, Becker HC, Zhang D, Zhang Y, Ecke W. 2006. Conditional QTL mapping of oil content in rapeseed with respect to protein content and traits related to plant development and grain yield. Theor Appl Genet 113: 33–38. [Google Scholar]
  • Zhao YM, Li Y, Ma H, He R. 2023. Effects of ultrasonic-assisted pH shift treatment on physicochemical properties of electrospinning nanofibers made from rapeseed protein isolates. Ultrason Sonochem 94: 106336. [Google Scholar]
  • Zhu X, Leiser WL, Hahn V, Würschum T. 2021. Phenomic selection is competitive with genomic selection for breeding of complex traits. Plant Phenome J 4: e20027. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.