Numéro
OCL
Volume 29, 2022
Bioactive lipids and lipid droplets: green ressources for food and health / Lipides et gouttelettes lipidiques bioactifs : des ressources vertes pour l’alimentation et la santé
Numéro d'article 22
Nombre de pages 7
DOI https://doi.org/10.1051/ocl/2022017
Publié en ligne 16 juin 2022
  • Alvez AV, Freitas de Lima F, Da Silva TG, De Oliveira VS, Kassuya CAL, Sanjinez-Argandona AJ. 2019. Safety evaluation of the oils extracted from edible insects (Tenebrio molitor and Pachymerus nucleorum) as novel food for humans. Regul Toxicol Pharmacol 102: 90–94. [CrossRef] [PubMed] [Google Scholar]
  • Aman P, Frederich M, Caparros Megido R. 2017. Insect fatty acids: a comparison of lipids from three orthopterans and Tenebrio molitor L. larvae. J Asia-Pac Entomol 20: 337–340. [CrossRef] [Google Scholar]
  • Benzertiha A, Kieronczyk B, Rawski M, Kołodziejski P, Bryszak M, Józefiak D. 2019. Insect oil as an alternative to palm oil and poultry fat in broiler chicken nutrition. Animals 9: 116–133. [CrossRef] [Google Scholar]
  • Berezina N. 2017. Insects: novel source of lipids for a fan of applications. OCL 24(4): D402. [CrossRef] [EDP Sciences] [Google Scholar]
  • Dabbou S, Ferrocino I, Gasco L, 2020. Antimicrobial effects of Black Soldier Fly and Yellow Mealworm fats and their impact on gut microbiota of growing rabbits. Animals 10: 1292–1310. [CrossRef] [Google Scholar]
  • Delicato C, Schouteten JJ, Dewettinck K, Gellynck X, Tzompa-Sosa DA. 2020. Consumers’ perception of bakery products with insect fat as partial butter re-placement. Food Qual and Prefer 79. [Google Scholar]
  • EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). 2016. Guidance on the Preparation and Presentation of an Application for Authorisation of a Novel Food in the Context of Regulation (EU) 2015/2283. EFS2 2016, 14. [Google Scholar]
  • EFSA. 2015. EFSA risk profile related to production and consumption of insects as food and feed. EFSA J 13: 4257. [CrossRef] [Google Scholar]
  • Francardi V, Frosinini R, Pichini C, Botta M, Cito A, Dreassi E. 2017. Galleria mellonella (Lepidoptera pyralidae): an edible insect of nutraceutical interest. REDIA 3: 285–294. [Google Scholar]
  • Freel TA, McComb A, Koutsos EA. 2021. Digestibility and safety of dry black soldier fly larvae meal and black soldier fly larvae oil in dogs. J Anim Sci 99. [Google Scholar]
  • Hender A, Siddik MAB, Howieson J, Fotedar R. 2021. Black soldier fly, Hermetia illucens as an alternative to fishmeal protein and fish oil: impact on growth, immune response, mucosal barrier status, and flesh quality of juvenile Barramundi, Lates calcarifer. Biology 10: 505–521. [CrossRef] [PubMed] [Google Scholar]
  • Henry MA, Gasco L, Piccolo G, Fountoulaki E. 2015. Review on the use of insects in the diet of farmed fish: past and future. Anim Feed Sci Tech 203: 1–22. [CrossRef] [Google Scholar]
  • Henry MA, Gasco L, Chatzifotis S, Piccolo G. 2018. Does dietary insect meal affect the fish immune system? The case of mealworm, Tenebrio molitor on European sea bass, Dicentrarchus labrax. Dev Comp Immunol 81: 204–209. [CrossRef] [Google Scholar]
  • International Platform of Insects for Food and Feed (IPIFF). 2021. An overview of the European market of insects as feed. https://ipiff.org/factsheets/. [Google Scholar]
  • Kieronczyk B, Rawski M, Jozefiak A. 2018. Effects of replacing soybean oil with selected insect fats on broilers. Anim Feed Sci Technol 240: 170–183. [CrossRef] [Google Scholar]
  • Kim JH, Kim EY, Chung KJ. 2021. Mealworm oil (MWO) enhances wound healing potential through the activation of fibroblast and endothelial cells. Molecules 26: 779–790. [CrossRef] [PubMed] [Google Scholar]
  • Lahteenmaki-Uutela A, Marimuthu SB, Meijer N. 2021. Regulations on insects as food and feed: a global comparison. J Insects Food Feed 7: 849–856. [CrossRef] [Google Scholar]
  • Lawal KG, Ravle RR, Akanbi TO, Mirosa M, Agyei D. 2021. Enrichment in specific fatty acids profile of Tenebrio molitor and Hermetia illucens larvae through feeding. Future Foods 3: 100016. [CrossRef] [Google Scholar]
  • Lee DJ, Kim M, Jung S. 2022. Direct conversion of yellow mealworm larvae into biodiesel via a non-catalytic transesterification platform. Chem Eng J 427. [PubMed] [Google Scholar]
  • Marusich E, Mohamed H, Afanasev Y, Leonov S. 2020. Fatty acids from Hermetia illucens larvae fat inhibit the proliferation and growth of actual phytopathogens. Microorganisms 8: 1423–1443. [CrossRef] [Google Scholar]
  • Motte C, Rios A, Lefebvre T, Do H, Henry M, Jintasataporn O. 2019. Replacing fish meal with defatted insect meal (Yellow Mealworm Tenebrio molitor) improves the growth and immunity of pacific white shrimp (Litopenaeus vannamei). Animals 9: 258–274. [CrossRef] [Google Scholar]
  • Oonincx DGAB, Finke MD. 2021. Nutritional value of insects and ways to manipulate their composition. J Insects Food Feed 7: 639–659. [CrossRef] [Google Scholar]
  • Orsavova J, Misurcova L, Ambrozova JV, Vicha A, Mlcek J. 2015. Fatty acids composition of vegetable oils and its contribution to dietary energy intake and dependance of cardiovascular mortality. Int J Mol Sci 16: 12871–12890. [CrossRef] [PubMed] [Google Scholar]
  • Ravzanaadii N, Kim SH, Choi WH, Hong SJ, Kim NJ. 2012. Nutritional value of mealworm, Tenebrio molitor as food source. Int J Ind Entomol 25: 93–98. [Google Scholar]
  • Rumpold BA, Schlüter OK. 2013. Nutritional composition and safety aspects of edible insects. Mol Nutr Food Res 57: 802–823. [CrossRef] [PubMed] [Google Scholar]
  • Schiavone A, Dabbou S, De Marco M. 2018. Black soldier fly larva fat inclusion in finisher broiler chicken diet as an alternative fat source. Animal 12: 2032–2039. [CrossRef] [PubMed] [Google Scholar]
  • Siow HS, Sudesh K, Murugan P, Ganesan S. 2021. Mealworm (Tenebrio molitor) oil characterization and optimization of the free fatty acid pretreatment via acid-catalyzed esterification. Fuel 299. [Google Scholar]
  • Smetanaa S, Leonhardt L, Kauppi SMA, Heinz, V. 2020. Insect margarine: processing, sustainability and design. J Clean Prod 264. [Google Scholar]
  • Tzompa-Sosa DA, Fogliano V. 2017. Potential of insect-derived ingredients for food applications. In: Shields, VDC, ed. Insect physiology and ecology. Towson University: IntechOpen, pp. 215–231. [Google Scholar]
  • Tzompa-Sosa DA, Yi L, Van Valenberg HJF, Van Boekel MAJS, Lakemond CMM. 2014. Insect lipid profile: aqueous versus organic solvent-based extraction methods. Food Res Int 62: 1087–1094. [CrossRef] [Google Scholar]
  • Tzompa-Sosa DA, Dewettinck K, Gellynck X, Schouteten JJ. 2021. Replacing vegetable oil by insect oil in food products: Effect of deodorization on the sensory evaluation. Food Res Int 141. [PubMed] [Google Scholar]
  • Van Huis. 2020. Insects as food and feed, a new emerging agricultural sector: a review. J Insects Food Feed 6: 27–44. [CrossRef] [Google Scholar]
  • Zheng L, Hou Y, Li W, Yang S, Li Q, Yu Z. 2013. Exploring the potential of grease from yellow mealworm beetle (Tenebrio molitor) as a novel biodiesel feedstock. Appl Energy 101: 618–621. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.