Numéro
OCL
Volume 29, 2022
Bioactive lipids and lipid droplets: green ressources for food and health / Lipides et gouttelettes lipidiques bioactifs : des ressources vertes pour l’alimentation et la santé
Numéro d'article 28
Nombre de pages 9
DOI https://doi.org/10.1051/ocl/2022023
Publié en ligne 21 juillet 2022
  • Alibade A, Lakka A, Bozinou E, Lalas SI, Chatzilazarou A, Makris DP. 2021. Development of a green methodology for simultaneous extraction of polyphenols and pigments from red winemaking solid wastes (pomace) using a novel glycerol-sodium benzoate deep eutectic solvent and ultrasonication pretreatment. Environments 8(9): 90. [CrossRef] [Google Scholar]
  • Amuti A, Wang X, Zan M, Lv S, Wang Z. 2021. Formulation and characterization of curcumin-loaded microemulsions: evaluation of antioxidant stability and in vitro release. J Mol Liq 336: 116881. [CrossRef] [Google Scholar]
  • Antonić B, Jančíková S, Dordević D, Tremlová B. 2020. Grape pomace valorization: a systematic review and meta-analysis. Foods 9(11): 1627. [CrossRef] [Google Scholar]
  • Apostolopoulou AA, Flouros AI, Demertzis PG, Akrida-Demertzi K. 2005. Differences in concentration of principal volatile constituents in traditional Greek distillates. Food Control 16(2): 157–164. [CrossRef] [Google Scholar]
  • Boles JS, Crerar DA, Grissom G, Key TC. 1988. Aqueous thermal degradation of gallic acid. Geochim Cosmochim Acta 52(2): 341–344. [CrossRef] [Google Scholar]
  • Buchner N, Krumbein A, Rohn S, Kroh LW. 2006. Effect of thermal processing on the flavonols rutin and quercetin. Rapid Commun Mass Spectrom 20: 3229–3235. [CrossRef] [PubMed] [Google Scholar]
  • Cecchi L, Piazzini V, D’Ambrosio M, et al. 2020. Formulation of a phenol-rich extract from unripe olives (Olea europaea L.) in microemulsion to improve its solubility and intestinal permeability. Molecules 25(14): 3198. [CrossRef] [Google Scholar]
  • Chatzidaki MD, Mitsou E, Yaghmur A, Xenakis A, Papadimitriou V. 2015. Formulation and characterization of food-grade microemulsions as carriers of natural phenolic antioxidants. Colloids Surf A Physicochem Eng Asp 483: 130–136. [CrossRef] [Google Scholar]
  • Chen L, Lin X, Xu X, et al. 2019. Self-nano-emulsifying formulation of Sonchus oleraceus Linn for improved stability: implications for phenolics degradation under in vitro gastro-intestinal digestion: food grade drug delivery system for crude extract but not single compound. J Funct Foods 53: 28–35. [CrossRef] [Google Scholar]
  • de Oliveira WP, Biasoto ACT, Marques VF, et al. 2017. Phenolics from winemaking by-products better decrease VLDL-cholesterol and triacylglycerol levels than those of red wine in wistar rats. J Food Sci 82: 2432–2437. [CrossRef] [PubMed] [Google Scholar]
  • El Gaamouch F, Liu K, Lin HY, Wu C, Wang J. 2021. Development of grape polyphenols as multi-targeting strategies for Alzheimer’s disease. Neurochem Int 147: 105046. [CrossRef] [PubMed] [Google Scholar]
  • Ferri M, Bin S, Vallini V, et al. 2016. Recovery of polyphenols from red grape pomace and assessment of their antioxidant and anti-cholesterol activities. N Biotechnol 33(3): 338–344. [CrossRef] [PubMed] [Google Scholar]
  • Fregapane G, Cabezas Fernández C, Salvador MD. 2022. Emulsion and microemulsion systems to improve functional edible oils enriched with walnut and pistachio phenolic extracts. Foods 11(9): 1210. [CrossRef] [PubMed] [Google Scholar]
  • Galmarini MV, Maury C, Mehinagic E, et al. 2013. Stability of individual phenolic compounds and antioxidant activity during storage of a red wine powder. Food Bioproc Technol 6: 3585–3595. [CrossRef] [Google Scholar]
  • Gollücke PBA, Ramos Catharino R, de Souza JC, Nogueira Eberlin M, de Queiroz Tavares D. 2009. Evolution of major phenolic components and radical scavenging activity of grape juices through concentration process and storage. Food Chem 112(4): 868–873. [CrossRef] [Google Scholar]
  • Ilyas T, Chowdhary P, Chaurasia D, Gnansounou E, Pandey A, Chaturvedi P. 2021. Sustainable green processing of grape pomace for the production of value-added products: an overview. Environ Technol Innov 23: 101592. [CrossRef] [Google Scholar]
  • Jin Q, Wang Z, Feng Y, et al. 2020. Grape pomace and its secondary waste management: biochar production for a broad range of lead (Pb) removal from water. Environ Res 186: 109442. [CrossRef] [PubMed] [Google Scholar]
  • Juškaitė V, Ramanauskienė K, Briedis V. 2015. Design and formulation of optimized microemulsions for dermal delivery of resveratrol. Evidence-Based Complementary and Alternative Medicine 2015: 540916. [PubMed] [Google Scholar]
  • Kaltsa O, Alibade A, Batra G, Bozinou E, Makris DP, Lalas SI. 2021. Fortification of chocolate using Moringa oleifera extract encapsulated in microemulsions. OCL 28: 38. [CrossRef] [EDP Sciences] [Google Scholar]
  • Kaltsa O, Grigorakis S, Lakka A, Bozinou E, Lalas S, Makris DP. 2020. Green valorization of olive leaves to produce polyphenol-enriched extracts using an environmentally benign deep eutectic solvent. AgriEngineering 2(2): 226–239. [CrossRef] [Google Scholar]
  • Li Y, Yokoyama W, Xu S, Zhu S, Ma J, Zhong F. 2017. Formation and stability of W/O microemulsion formed by food grade ingredients and its oral delivery of insulin in mice. J Funct Foods 30: 134–141. [CrossRef] [Google Scholar]
  • Milinčić DD, Stanisavljević NS, Kostić AZ, et al. 2021. Phenolic compounds and biopotential of grape pomace extracts from Prokupac red grape variety. LWT 138: 110739. [CrossRef] [Google Scholar]
  • Mitsou E, Dupin A, Sassi AH, et al. 2019. Hydroxytyrosol encapsulated in biocompatible water-in-oil microemulsions: how the structure affects in vitro absorption. Colloids Surf B Biointerfaces 184: 110482. [CrossRef] [PubMed] [Google Scholar]
  • Mostafa DM, Ammar NM, Abd El-Alim SH, El-Anssary AA. 2014. Transdermal microemulsions of Glycyrrhiza glabra L.: characterization, stability and evaluation of antioxidant potential. Drug Deliv 21(2): 130–139. [CrossRef] [PubMed] [Google Scholar]
  • Muñoz-Bernal ÓA, Coria-Oliveros AJ, de la Rosa LA, et al. 2021. Cardioprotective effect of red wine and grape pomace. Food Res Int 140: 110069. [CrossRef] [PubMed] [Google Scholar]
  • Oh JK, Kim SJ, Imm JY. 2006. Antioxidative effect of crude anthocyanins in water-in-oil microemulsion system. Food Sci Biotechnol 15(2): 283–288. [Google Scholar]
  • Pasinetti GM, Wang J, Ho L, Zhao W, Dubner L. 2015. Roles of resveratrol and other grape-derived polyphenols in Alzheimer’s disease prevention and treatment. Biochim Biophys Acta − Mol Basis Dis 1852(6): 1202–1208. [CrossRef] [Google Scholar]
  • Rohn S, Buchner N, Driemel G, Rauser M, Kroh LW. 2007. Thermal degradation of onion quercetin glucosides under roasting conditions. J Agric Food Chem 55(4): 1568–1573. [CrossRef] [PubMed] [Google Scholar]
  • Rosenzweig T, Skalka N, Rozenberg K, et al. 2017. Red wine and wine pomace reduced the development of insulin resistance and liver steatosis in HFD-fed mice. J Funct Foods 34: 379–389. [CrossRef] [Google Scholar]
  • Sakuragi M, Yano R, Binti S, Hasnol M, Kusakabe K. 2020. Evaluation of microemulsions containing a large amount of a deep eutectic solvent as a potential transdermal carrier of resveratrol. Jpn J Appl Phys 59: 095004. [CrossRef] [Google Scholar]
  • Sirohi R, Tarafdar A, Singh S, et al. 2020. Green processing and biotechnological potential of grape pomace: current trends and opportunities for sustainable biorefinery. Biores Technol 314: 123771. [CrossRef] [Google Scholar]
  • Slavu M, Aprodu I, Milea ȘA, et al. 2020. Thermal degradation kinetics of anthocyanins extracted from purple maize flour extract and the effect of heating on selected biological functionality. Foods 9(11): 1593. [CrossRef] [Google Scholar]
  • Sólyom K, Solá R, Cocero MJ, Mato RB. 2014. Thermal degradation of grape marc polyphenols. Food Chem 159: 361–366. [CrossRef] [PubMed] [Google Scholar]
  • Spigno G, Marinoni L, Garrido GD. 2017. State of the art in grape processing by-products. In: Galanakis CM, ed. Handbook of grape processing by-products. Cambridge (Massachusetts): Academic Press, pp. 1–27. [Google Scholar]
  • Tayengwa T, Chikwanha OC, Raffrenato E, Dugan MER, Mutsvangwa T, Mapiye C. 2021. Comparative effects of feeding citrus pulp and grape pomace on nutrient digestibility and utilization in steers. Animal 15(1): 100020. [CrossRef] [PubMed] [Google Scholar]
  • Tolun A, Artik N, Altintas Z. 2020. Effect of different microencapsulating materials and relative humidities on storage stability of microencapsulated grape pomace extract. Food Chem 302: 125347. [CrossRef] [PubMed] [Google Scholar]
  • Tsantili E, Konstantinidis K, Christopoulos MV, Roussos PA. 2011. Total phenolics and flavonoids and total antioxidant capacity in pistachio (Pistachia vera L.) nuts in relation to cultivars and storage conditions. Sci Hortic 129(4): 694–701. [CrossRef] [Google Scholar]
  • Yutani R, Teraoka R, Kitagawa S. 2015. Microemulsion using polyoxyethylene sorbitan trioleate and its usage for skin delivery of resveratrol to protect skin against UV-induced damage. Chemical and Pharmaceutical Bulletin 63(9): 741–745. [CrossRef] [PubMed] [Google Scholar]
  • Zapata JE, Sepúlveda CT, Álvarez AC. 2021. Kinetics of the thermal degradation of phenolic compounds from achiote leaves (Bixa orellana L.) and its effect on the antioxidant activity. Food Sci Technol [online]. Available from https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=Kinetics+of +the+thermal+degradation+of+phenolic+compounds +from+achiote+leaves+%28Bixa+orellana+L.%29+and+its+effect+on+the+antioxidant+&btnG=. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.