Open Access
Numéro |
OCL
Volume 29, 2022
|
|
---|---|---|
Numéro d'article | 9 | |
Nombre de pages | 13 | |
Section | Quality - Food safety | |
DOI | https://doi.org/10.1051/ocl/2022002 | |
Publié en ligne | 11 février 2022 |
- Abdallah A, Miguel HA, Thomas MG. 1998. Oil content and fatty acid composition of almond kernels from different genotypes and California production regions. J Am Soc Hortic Sci 123(6): 1029–33. https://doi.org/10.21273/JASHS.123.6.1029. [CrossRef] [Google Scholar]
- Akpambang V, Amoo I, Izuagie A. 2008. Comparative compositional analysis on two varieties of melon (Colocynthis citrullus and Cucumeropsis edulis) and a variety of almond (Prunus amygdalus). Res J Agric Biol Sci 4: 639–642. [Google Scholar]
- Barreca D, Nabavi SM, Sureda A, et al. 2020. Almonds (Prunus dulcis Mill. D.A. Webb): A source of nutrients and health-promoting compounds. Nutrients 12(3). https://doi.org/10.3390/nu12030672. [CrossRef] [Google Scholar]
- Boukyoud Z, Ibourki M, Gharby S, et al. 2021. Can the water quality influence the chemical composition, sensory properties, and oxidative stability of traditionally extracted argan oil? Mediterr J Nutr Metab 4(14): 383–399. https://doi.org/10.3233/MNM-210005. [CrossRef] [Google Scholar]
- Boussakouran A, El Hassan S, Mohamed EY, Yahia R. 2019. Morphological traits associated with drought stress tolerance in six Moroccan durum wheat varieties released between 1984 and 2007. J Crop Sci Biotechnol 22(4):345–53. https://doi.org/10.1007/s12892-019-0138-0. [CrossRef] [Google Scholar]
- Boussakouran A, Mohamed EY, El Hassan S, Yahia R. 2021. Genetic advance and grain yield stability of Moroccan durum wheats grown under rainfed and irrigated conditions. Int J Agron 2021: e5571501. https://doi.org/10.1155/2021/5571501. [CrossRef] [Google Scholar]
- Ceccanti C, Brizzi A, Landi M, Incrocci L, Pardossi A, Guidi L. 2021. Evaluation of major minerals and trace elements in wild and domesticated edible herbs traditionally used in the Mediterranean area. Biol Trace Elem Res 199: 3553–3561. https://doi.org/10.1007/s12011-020-02467-3. [CrossRef] [PubMed] [Google Scholar]
- Čolić S, Zec G, Natić M, Fotirić-Akšić M. 2019. Almond (Prunus dulcis) oil. In: Ramadan M, ed. Fruit oils: Chemistry and functionality. Cham: Springer. https://doi.org/10.1007/978-3-030-12473-1_6. [Google Scholar]
- Drogoudi PD, Pantelidis G, Bacchetta L, et al. 2013. Protein and mineral nutrient contents in kernels from 72 sweet almond cultivars and accessions grown in France, Greece and Italy. Int J Food Sci Nutr 64(2): 202–9. https://doi.org/10.3109/09637486.2012.728202. [CrossRef] [PubMed] [Google Scholar]
- Dronkelaar C, Aafke VV, Maya A, Anouk VDS, Weijs PJS, Tieland M. 2018. Minerals and sarcopenia: The role of calcium, iron, magnesium, phosphorus, potassium, selenium, sodium, and zinc on muscle mass, muscle strength, and physical performance in older adults: A systematic review. J Am Med Dir Assoc 19(1): 6–11. e3. https://doi.org/10.1016/j.jamda.2017.05.026. [CrossRef] [PubMed] [Google Scholar]
- El Yamani M, El Hassan S, Mansouri F, Caid H, Elamrani A, Rharrabti Y. 2019a. Effect of pigments and total phenols on oxidative stability of monovarietal virgin olive oil produced in Morocco. Riv Ital Delle Sostanze Grasse 96: 17–24. [Google Scholar]
- El Yamani M, Sakar EH, Boussakouran A, Benali T, Rharrabti Y. 2019b. Antioxidant activity of phenolic extracts from olive mill wastewater and their influence on virgin olive oil stability. Moroc J Chem 7(1): 211–223. https://doi.org/10.48317/IMIST.PRSM/morjchem-v7i1.13835. [Google Scholar]
- El Yamani M, Sakar EH, Boussakouran A, Rharrabti Y. 2019c. Physiological and biochemical responses of young olive trees (Olea Europaea L.) to water stress during flowering. Arch Biol Sci 71(1): 123–32. [CrossRef] [Google Scholar]
- El Yamani M, Sakar EH, Boussakouran A, Ghabbour N, Rharrabti Y. 2020a. Physicochemical and microbiological characterization of olive mill wastewater (OMW) from different regions of northern Morocco. Environ Technol 41(23): 3081–93. https://doi.org/10.1080/09593330.2019.1597926. [CrossRef] [PubMed] [Google Scholar]
- El Yamani M, El Hassan S, Boussakouran A, Rharrabti Y. 2020b. Leaf water status, physiological behavior and biochemical mechanism involved in young olive plants under water deficit. Sci Hortic 261: 108906. https://doi.org/10.1016/j.scienta.2019.108906. [CrossRef] [Google Scholar]
- El Yamani M, Sakar EH, Boussakouran A, Rharrabti Y. 2020c. Activity of two natural additives in improving the stability of virgin olive oil quality during storage. OCL 27: 44. https://doi.org/10.1051/ocl/2020039. [Google Scholar]
- El Yamani M, Sakar EH, Boussakouran A, Rharrabti Y. 2020d. Influence of ripening index and water regime on the yield and quality of “Moroccan Picholine” virgin olive oil. OCL 27: 19. https://doi.org/10.1051/ocl/2020015. [CrossRef] [EDP Sciences] [Google Scholar]
- Faez M, Bchitou R, Boulmane M, Bouhaouss A, Guillaume D. 2013. Modeling of the distribution of heavy metals and trace elements in argan forest soil and parts of argan tree. Nat Prod Commun 8: 21–23. https://doi.org/10.1177/1934578x1300800105. [PubMed] [Google Scholar]
- FAOSTAT. 2021. FAO Statistical Yearbook. Rome. [Google Scholar]
- Gharby S, Harhar H, Bouzoubaa Z, Asdadi A, El Yadini A, Charrouf Z. 2017. Chemical characterization and oxidative stability of seeds and oil of sesame grown in Morocco. J Saudi Soc Agric Sci 16(2): 105–11. https://doi.org/10.1016/j.jssas.2015.03.004. [Google Scholar]
- Gharby S, Harhar H, Farssi M, Ait Taleb A, Guillaume D, Laknifli L. 2018. Influence of roasting olive fruit on the chemical composition and polycyclic aromatic hydrocarbon content of olive oil. OCL 25(3): A303. https://doi.org/10.1051/ocl/2018013. [CrossRef] [EDP Sciences] [Google Scholar]
- Gharby S, Ravi HA, Guillaume D, Vian MA, Chemat F, Charrouf Z. 2020. 2-methyloxolane as alternative solvent for lipid extraction and its effect on the cactus (Opuntia ficus-indica L.) seed oil fractions. OCL 27: 27. https://doi.org/10.1051/ocl/2020021. [CrossRef] [EDP Sciences] [Google Scholar]
- Gharby S, Hajib A, Ibourki M, et al. 2021. Induced changes in olive oil subjected to various chemical refining steps: A comparative study of quality indices, fatty acids, bioactive minor components, and oxidation stability kinetic parameters. Chem Data Collect 33: 100702. https://doi.org/10.1016/j.cdc.2021.100702. [CrossRef] [Google Scholar]
- Ibourki M, Gharby S, Azoughigh F, El Ghailassi K, Laknifli A, El Hammadi A. 2019. Determination of mineral and trace elements in leaves of four fruit trees (argan, olive, carob and almond tree) by inductively coupled plasma optical emission spectrometer. Journal of Anal Sci Appl Biotechnol 1(2): 22–27. https://doi.org/10.48402/IMIST.PRSM/jasab-v1i2.18968. [Google Scholar]
- Ibourki M, Gharby S, Guillaume D, et al. 2021a. Profiling of mineral elements and heavy metals in argan leaves and fruit by-products using inductively coupled plasma optical emission spectrometry and atomic absorption spectrometry. Chem Data Collect 35: 100772. https://doi.org/10.1016/j.cdc.2021.100772. [CrossRef] [Google Scholar]
- Ibourki M, Azouguigh F, Jadouali S, et al. 2021b. Physical fruit traits, nutritional composition, and seed oil fatty acids profiling in the main date palm (Phoenix dactylifera L.) varieties grown in Morocco. J Food Qual. https://doi.org/10.1155/2021/5138043. [Google Scholar]
- Ibourki M, Ait Bouzid H, Bijla L, et al. 2022. Mineral profiling of twenty wild and cultivated aromatic and medicinal plants growing in Morocco. Biol Trace Elem Res. https://doi.org/10.1007/s12011-021-03062-w. [PubMed] [Google Scholar]
- King JC, Blumberg J, Ingwersen L, Jenab M, Tucker KL. 2008. Tree nuts and peanuts as components of a healthy diet. J Nutr 138: 1736S–1740S. https://doi.org/10.1093/jn/138.9.1736S. [CrossRef] [PubMed] [Google Scholar]
- Kodad O, Socias i Company R. 2008. Variability of oil content and of major fatty acid composition in almond (Prunus Amygdalus Batsch) and its relationship with kernel quality. J Agric Food Chem 56(11): 4096–4101. https://doi.org/10.1021/jf8001679. [CrossRef] [PubMed] [Google Scholar]
- Kodad O, Estopañan G, Juan T, et al. 2010. Plasticity and stability in the major fatty acid content of almond kernels grown under two Mediterranean climates. J Hortic Sci Biotechnol 85(5): 381–86. https://doi.org/10.1080/14620316.2010.11512684. [CrossRef] [Google Scholar]
- Kodad O, Estopañán G, Juan T, Socias I, Company R. 2013. Protein content and oil composition of almond from Moroccan seedlings: Genetic diversity, oil quality and geographical origin. J Am Oil Chem Soc 90(2): 243–52. https://doi.org/10.1007/s11746-012-2166-z. [CrossRef] [Google Scholar]
- Kodad O, Estopañán G, Fagroud M, Juan T, Socias i Company R. 2014. Physical and chemical traits of almond kernels of the local almond populations in Morocco: Commercial and industrial end-uses. Acta Hortic 1028: 233–38. https://doi.org/10.17660/ActaHortic.2014.1028.37. [CrossRef] [Google Scholar]
- Kodad O, Lebrigui L, El-Amrani L, Socias i Company R. 2015. Physical fruit traits in Moroccan almond seedlings: Quality aspects and post-harvest uses. Int J Fruit Sci 15(1): 36–53. https://doi.org/10.1080/15538362.2014.924830. [CrossRef] [Google Scholar]
- Martins AN, Gomes C, Ferreira L. 2000. Almond production and characteristics in Algarve, Portugal. NUCIS Newsl 9: 6–9. [Google Scholar]
- Moodley R, Kindness A, Jonnalagadda SB. 2007. Elemental composition and chemical characteristics of five edible nuts (almond, Brazil, pecan, macadamia and walnut) consumed in Southern Africa. J Environ Sci Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes 42(5): 585–59. http://doi.org/10.1080/03601230701391591. [CrossRef] [PubMed] [Google Scholar]
- Özcan MM. 2006. Determination of the mineral compositions of some selected oil-bearing seeds and kernels using Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES). Grasas y Aceites 57(2): 211–18. https://doi.org/10.3989/gya.2006.v57.i2.39. [Google Scholar]
- Özcan MM, Ünver A, Erkan E, Arslan D. 2011. Characteristics of some almond kernel and oils. Sci Hortic 127(3): 330–33. https://doi.org/10.1016/j.scienta.2010.10.027. [CrossRef] [Google Scholar]
- Prgomet I, Gonçalves B, Domínguez-Perles R, Pascual-Seva N, Barros AI. 2017. Valorization challenges to almond residues: Phytochemical composition and functional application. Molecules 22(10). https://doi.org/10.3390/molecules22101774. [CrossRef] [Google Scholar]
- Roncero JM, Álvarez-Ortí M, Pardo-Giménez A, Rabadán A, Pardo EJ. 2020. Review about non-lipid components and minor fat-soluble bioactive compounds of almond kernel. Foods 9(11): 1646. https://doi.org/10.3390/foods9111646. [CrossRef] [Google Scholar]
- Roshila M, Kindness A, Jonnalagadda S. 2007. Elemental composition and chemical characteristics of five edible nuts (almond, Brazil, pecan, macadamia and walnut) consumed in Southern Africa. J Environ Sci Health Part. B, Pesticides, Food Contaminants, and Agricultural Wastes 42: 585–91. https://doi.org/10.1080/03601230701391591. [CrossRef] [PubMed] [Google Scholar]
- Sakar EH, El Yamani M, Rharrabti Y. 2017a. Frost susceptibility of five almond [Prunus dulcis (Mill.) D.A. Webb] cultivars grown in North-Eastern Morocco as revealed by chlorophyll fluorescence. Int J Fruit Sci 17(4): 415–422. https://doi.org/10.1080/15538362.2017.1345671. [CrossRef] [Google Scholar]
- Sakar EH, El Yamani M, Rharrabti Y. 2017b. Variability of oil content and its physico-chemical traits from five almond (Prunis dulcis) cultivars grown in Northern Morocco. J Mater Environ Sci 8(8): 2679–2686. [Google Scholar]
- Sakar EH, El Yamani M, Boussakouran A, Rharrabti Y. 2019a. Codification and description of almond (Prunus dulcis) vegetative and reproductive phenology according to the extended BBCH scale. Sci Hortic 247: 224–234. https://doi.org/10.1016/j.scienta.2018.12.024. [CrossRef] [Google Scholar]
- Sakar EH, El Yamani M, Rharrabti Y. 2019b. Geometrical traits in almond fruit as affected by genotypic and environmental variations in Northern Morocco. Erwerbs-Obstbau 61(2): 103–12. https://doi.org/10.1007/s10341-018-0401-y. [CrossRef] [Google Scholar]
- Sakar EH, El Yamani M, Rharrabti Y. 2020. Fruit gravimetrical traits in almond [Prunus dulcis (Mill.) D.A. Webb]: Combined effects of genetic control and environmental drivers. Erwerbs-Obstbau 62(1): 37–46. https://doi.org/10.1007/s10341-019-00457-x. [CrossRef] [Google Scholar]
- Sakar EH, El Yamani M, Boussakouran A, et al. 2021a. Variability of oil content and its physicochemical traits from the main almond [Prunus dulcis Mill. DA Webb] cultivars grown under contrasting environments in North-Eastern Morocco. Biocatal Agric Biotechnol 32: 101952. https://doi.org/10.1016/j.bcab.2021.101952. [CrossRef] [Google Scholar]
- Sakar EH, El Yamani M, Boussakouran A, Rharrabti Y. 2021b. Genotypic and environmental variations in kernel color indices in the main almond (Prunus dulcis (Mill.) D.A. Webb) cultivars grown in North-Eastern Morocco. Scientifica 2021: e9970223. https://doi.org/10.1155/2021/9970223. [CrossRef] [Google Scholar]
- Sathe SK, Seeram NP, Kshirsagar HH, Heber D, Lapsley KA. 2008. Fatty acid composition of California grown almonds. J Food Sci 73(9): C607–14. https://doi.org/10.1111/j.1750-3841.2008.00936.x. [CrossRef] [PubMed] [Google Scholar]
- Schirra M, Mulas M, Nieddu G, Virdis F. 1994. Mineral content in “Texas” almonds during fruit growth and ripening. Acta Hortic 373: 207–14. https://doi.org/10.17660/ActaHortic.1994.373.29. [CrossRef] [Google Scholar]
- Şimşek M, Demirkiran AR. 2010. Determination of superior almond genotypes in Diyarbakir Central Districts. Agric J 5(3): 173–80. https://doi.org/10.3923/aj.2010.173.180. [CrossRef] [Google Scholar]
- Şimşek M, Kizmaz V. 2017. Determination of chemical and mineral compositions of promising almond (Prunus Amygdalus L.) genotypes from Beyazsu (Mardin) Region Beyazsu (Mardin) Yöresisindeki Üstün Badem (Prunus Amygdalus Batsch) genotiplerinin Kimyasal ve Mineral Kompozisyonlarının Belirlenmesi. Int J Agric Wildl Sci (IJAWS) 2017: 6–11. https://doi.org/10.24180/ijaws.298525. [Google Scholar]
- Şimşek M, Arikan B, Yildirim Y, Olmez N, Boguc F. 2018. Fatty acid, mineral and proximate compositions of various genotypes and commercial cultivars of sweet almond from the same ecological conditions. Appl Ecol Environ Res 16. https://doi.org/10.15666/aeer/1603_29572971. [Google Scholar]
- Socias i Company R, Gradziel TM. 2017. Almonds: Botany, production and uses. Wallingford: CABI. [CrossRef] [Google Scholar]
- Sorkheh K, Shiran B, Khodambashi M, Moradi H, Gradziel TM, Martínez-Gómez P. 2010. Correlations between quantitative tree and fruit almond traits and their implications for breeding. Sci Hortic 125(3): 323–31. https://doi.org/10.1016/j.scienta.2010.04.014. [CrossRef] [Google Scholar]
- USDA. 2010. Agricultural Research Service/USDA, National Nutrient Database for Standard Reference, Release 23. Retrieved 10/4/2010. [Google Scholar]
- Wang W, Wang HL, Xiao XZ, Xu XO. 2019. Wild almond (Amygdalus Pedunculata Pall.) as potential nutritional resource for the future: studies on its chemical composition and nutritional value. J Food Measure Charact 13(1): 250–58. https://doi.org/10.1007/s11694-018-9939-5. [CrossRef] [Google Scholar]
- Williams MH. 2005. Dietary supplements and sports performance: Minerals. J Int Soc Sports Nutr 2(1): 43. https://doi.org/10.1186/1550-2783-2-1-43. [PubMed] [Google Scholar]
- Wintergerst ES, Maggini S, Hornig DH. 2007. Contribution of selected vitamins and trace elements to immune function. Ann Nutr Metab 51(4): 301–23. https://doi.org/10.1159/000107673. [CrossRef] [PubMed] [Google Scholar]
- Yada S, Lapsley K, Huang G. 2011. A review of composition studies of cultivated almonds: Macronutrients and micronutrients. J Food Compos Anal 24: 469–480. https://doi.org/10.1016/j.jfca.2011.01.007. [CrossRef] [Google Scholar]
- Yada S, Huang G, Lapsley K. 2013. Natural variability in the nutrient composition of California-grown almonds. J Food Compos Anal 30(2): 80–85. https://doi.org/10.1016/j.jfca.2013.01.008. [CrossRef] [Google Scholar]
- Zahedi SM, Abdelrahman M, Hosseini MS, Yousefi R, Tran LMP. 2020. Physical and biochemical properties of 10 wild almond (Amygdalus scoparia) accessions naturally grown in Iran. Food Biosci 37. https://doi.org/10.1016/j.fbio.2020.100721. [CrossRef] [Google Scholar]
- Zeroual A, Sakar EH, Eloutassi N, Mahjoubi F, Chaouch M, Chaqroune A. 2021. Phytochemical profiling of essential oils isolated using hydrodistillation and microwave methods and characterization of some nutrients in Origanum compactum Benth from Central-Northern Morocco. Biointerf Res Appl Chem 11. https://doi.org/10.33263/BRIAC112.93589371. [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.