Volume 27, 2020
Technological challenges in oilseed crushing and refining / Défis technologiques de la trituration et du raffinage des oléagineux
Numéro d'article 61
Nombre de pages 17
Publié en ligne 17 novembre 2020
  • Amarowicz R, Naczk M, Shahidi F. 2000. Antioxidant activity of crude tannins of canola and rapeseed hulls. J Am Oil Chem Soc 77: 957–961. [CrossRef] [Google Scholar]
  • Aouf C, Lecomte J, Villeneuve P, Dubreucq E, Fulcrand H. 2012. Chemo-enzymatic functionalization of gallic and vanillic acids: synthesis of bio-based epoxy resins prepolymers. Green Chem 14: 2328. [CrossRef] [Google Scholar]
  • Aouf C, Zago E, Lecomte J, et al. 2016. Polyaromatic dimers, method for preparing same and use of same. Patent WO2016/097657. [Google Scholar]
  • Auger B, Marnet N, Gautier V, et al. 2010. A detailed survey of seed coat flavonoids in developing seeds of Brassica napus L. J Agric Food Chem 58: 6246–6256. [CrossRef] [PubMed] [Google Scholar]
  • Barakat A, Rouau X. 2014. New dry technology of environmentally friendly biomass refinery: glucose yield and energy efficiency. Biotechnol Biofuels 7: 138. [CrossRef] [Google Scholar]
  • Barry TN. 1976. The effectiveness of formaldehyde treatment in protecting dietary protein from rumen microbial degradation. Proc Nutr Soc 35: 221–229. [CrossRef] [Google Scholar]
  • Baumert A, Milkowski C, Schmidt J, Nimtz M, Wray V, Strack D. 2005. Formation of a complex pattern of sinapate esters in Brassica napus seeds, catalyzed by enzymes of a serine carboxypeptidase-like acyltransferase family? Phytochemistry 66: 1334–1345. [CrossRef] [PubMed] [Google Scholar]
  • Bayrasy C, Chabi B, Laguerre M, et al. 2013. Boosting antioxidants by lipophilization: a strategy to increase cell uptake and target mitochondria. Pharm Res 30: 1979–1989. [CrossRef] [PubMed] [Google Scholar]
  • Bongartz V, Böttger C, Wilhelmy N, Schulze-Kaysers N, Südekum K-H, Schieber A. 2018. Protection of protein from ruminal degradation by alkali-induced oxidation of chlorogenic acid in sunflower meal. J Anim Physiol Anim Nutr 102: e209–e215. [CrossRef] [Google Scholar]
  • Borredon M-E, Berger M, Dauguet S, et al. 2011. Débouchés actuels et futures du tournesol produit en France–Critères de qualité. Innov Agron 14: 19–38. [Google Scholar]
  • Broudiscou L-P, Laguna O, Lecomte J, Solé-Jamault V, Dauguet S. 2020. Methods assessment of self-tanning of rapeseed and sunflower meal fractions enriched in proteins and phenolic compounds using in vitro measurement of protein rumen degradability. OCL 27: 1. [CrossRef] [EDP Sciences] [Google Scholar]
  • Cai R, Arntfield SD. 2001. A rapid high-performance liquid chromatographic method for the determination of sinapine and sinapic acid in canola seed and meal. J Am Oil Chem Soc 78: 903–910. [CrossRef] [Google Scholar]
  • Carré P, Citeau M, Robin G, Estorges M. 2016. Hull content and chemical composition of whole seeds, hulls and germs in cultivars of rapeseed (Brassica napus). OCL 23: A302. [CrossRef] [EDP Sciences] [Google Scholar]
  • Dilokpimol A, Mäkelä MR, Aguilar-Pontes MV, Benoit-Gelber I, Hildén KS, de Vries RP. 2016. Diversity of fungal feruloyl esterases: updated phylogenetic classification, properties, and industrial applications. Biotechnol Biofuels 9: 231. [CrossRef] [Google Scholar]
  • Dimitrios B. 2006. Sources of natural phenolic antioxidants. Trends Food Sci Technol 17: 505–512. [CrossRef] [Google Scholar]
  • Diot-Néant F, Migeot L, Hollande L, Reano FA, Domenek S, Allais F. 2017. Biocatalytic synthesis and polymerization via ROMP of new biobased phenolic monomers: a greener process toward sustainable antioxidant polymers. Front Chem 5: 126. [CrossRef] [Google Scholar]
  • Fang J, Reichelt M, Hidalgo W, Agnolet S, Schneider B. 2012. Tissue-specific distribution of secondary metabolites in rapeseed (Brassica napus L.). PLoS ONE 7(10): e48006. [CrossRef] [PubMed] [Google Scholar]
  • Faulds CB. 2010. What can feruloyl esterases do for us? Phytochem Rev 9: 121–132. [CrossRef] [Google Scholar]
  • Fine F, Lucas J-L, Chardigny J-M, Redlingshöfer B, Renard M. 2015. Food losses and waste in the French oilcrops sector. OCL 22: A302. [CrossRef] [EDP Sciences] [Google Scholar]
  • González MJ, Medina I, Maldonado OS, Lucas R, Morales JC. 2015. Antioxidant activity of alkyl gallates and glycosyl alkyl gallates in fish oil in water emulsions: Relevance of their surface active properties and of the type of emulsifier. Food Chem 183: 190–196. [CrossRef] [PubMed] [Google Scholar]
  • González-Pérez S, Vereijken JM. 2007. Sunflower proteins: overview of their physicochemical, structural and functional properties. J Sci Food Agric 87: 2173– [CrossRef] [Google Scholar]
  • Gopalan N, Rodríguez-Duran LV, Saucedo-Castaneda G, Nampoothiri KM. 2015. Review on technological and scientific aspects of feruloyl esterases: A versatile enzyme for biorefining of biomass. Bioresour Technol 193: 534–544. [CrossRef] [Google Scholar]
  • Grajeda-Iglesias C, Salas E, Barouh N, Baréa B, Panya A, Figueroa-Espinoza MC. 2016. Antioxidant activity of protocatechuates evaluated by DPPH, ORAC, and CAT methods. Food Chem 194: 749–757. [CrossRef] [PubMed] [Google Scholar]
  • Gullón B, Eibes G, Moreira MT, Herrera R, Labidi J, Gullón P. 2018. Yerba mate waste: A sustainable resource of antioxidant compounds. Ind Crops Prod 113: 398–405. [CrossRef] [Google Scholar]
  • Guo W, Hou Y, Ren S, Tian S, Wu W. 2013. Formation of deep eutectic solvents by phenols and choline chloride and their physical properties. J Chem Eng Data 58: 866–872. [CrossRef] [Google Scholar]
  • Hernández-Jabalera A, Cortés-Giraldo I, Dávila-Ortíz G, et al. 2015. Influence of peptides–phenolics interaction on the antioxidant profile of protein hydrolysates from Brassica napus. Food Chem 178: 346–357. [CrossRef] [PubMed] [Google Scholar]
  • Hollande L, Domenek S, Allais F. 2018. Chemo-enzymatic synthesis of renewable sterically-hindered phenolic antioxidants with tunable polarity from lignocellulose and vegetal oil components. Int J Mol Sci 19: 3358. [CrossRef] [Google Scholar]
  • Horbury MD, Turner MAP, Peters JS, et al. 2020. Exploring the photochemistry of an ethyl sinapate dimer: an attempt toward a better ultraviolet filter. Front Chem 8: 633. [CrossRef] [Google Scholar]
  • Ivanova P, Chalova V, Uzunova G, Koleva L, Manolov I. 2016. Biochemical characterization of industrially produced rapeseed meal as a protein source in food industry. Agric Agric Sci Proc 10: 55–62. [Google Scholar]
  • Jensen SK, Liu Y-G, Eggum BO. 1995. The effect of heat treatment on glucosinolates and nutritional value of rapeseed meal in rats. Anim Feed Sci Technol 53: 17–28. [CrossRef] [Google Scholar]
  • Kalaydzhiev H, Ivanova P, Stoyanova M, et al. 2020. Valorization of rapeseed meal: influence of ethanol antinutrients removal on protein extractability, amino acid composition and fractional profile. Waste Biomass Valoriz 11: 2709–2719. [CrossRef] [Google Scholar]
  • Karamać M, Kosińska A, Estrella I, Hernández T, Dueñas M. 2012. Antioxidant activity of phenolic compounds identified in sunflower seeds. Eur Food Res Technol 235: 221–230. [CrossRef] [Google Scholar]
  • Kelle S, Nieter A, Krings U, Zelena K, Linke D, Berger RG. 2016. Heterologous production of a feruloyl esterase from Pleurotus sapidus synthesizing feruloyl-saccharide esters: FAE production from P. sapidus synthesizing feruloyl-saccharide esters. Biotechnol Appl Biochem 63: 852–862 [CrossRef] [PubMed] [Google Scholar]
  • Kennedy JA, Jones GP. 2001. Analysis of proanthocyanidin cleavage products following acid-catalysis in the presence of excess phloroglucinol. J Agric Food Chem 49: 1740–1746. [CrossRef] [PubMed] [Google Scholar]
  • Khattab R, Eskin M, Aliani M, Thiyam U. 2010. Determination of sinapic acid derivatives in canola extracts using high-performance liquid chromatography. J Am Oil Chem Soc 87: 147–155. [CrossRef] [Google Scholar]
  • Kikuzaki H, Hisamoto M, Hirose K, Akiyama K, Taniguchi H. 2002. Antioxidant properties of ferulic acid and its related compounds. J Agric Food Chem 50: 2161–2168. [CrossRef] [PubMed] [Google Scholar]
  • Kreps F, Vrbiková L, Schmidt Š. 2014. Industrial rapeseed and sunflower meal as source of antioxidants. Int J Eng Res Appl 4: 45–54. [Google Scholar]
  • Kumar N, Pruthi V. 2014. Potential applications of ferulic acid from natural sources. Biotechnol Rep 4: 86–93. [CrossRef] [Google Scholar]
  • Laguerre M, López-Giraldo LJ, Lecomte J, et al. 2008. Conjugated autoxidizable triene (CAT) assay: a novel spectrophotometric method for determination of antioxidant capacity using triacylglycerol as ultraviolet probe. Anal Biochem 380: 282–290. [CrossRef] [PubMed] [Google Scholar]
  • Laguerre M, López-Giraldo LJ, Lecomte J, et al. 2010. Relationship between hydrophobicity and antioxidant ability of “phenolipids” in emulsion: a parabolic effect of the chain length of rosmarinate esters. J Agric Food Chem 58: 2869–2876. [CrossRef] [PubMed] [Google Scholar]
  • Laguna O. 2019. Valorisation des composés phénoliques des tourteaux de colza et tournesol : du fractionnement des matières premières vers la synthèse de molécules multifonctionnelles. In: Sciences agricoles. Université Montpellier. Français. NNT : 2019MONTG007. tel-02142245f. [Google Scholar]
  • Laguna O, Barakat A, Alhamada H, et al. 2018. Production of proteins and phenolic compounds enriched fractions from rapeseed and sunflower meals by dry fractionation processes. Ind Crops Prod 118: 160–172. [Google Scholar]
  • Laguna O, Odinot E, Bisotto A, et al. 2019. Release of phenolic acids from sunflower and rapeseed meals using different carboxylic esters hydrolases from Aspergillus niger. Ind Crops Prod 139: 111579. [CrossRef] [Google Scholar]
  • Laguna O, Durand E, Baréa B, et al. 2020. Synthesis and evaluation of antioxidant activities of novel hydroxyalkyl esters and bis-aryl esters based on sinapic and caffeic acids. J Agric Food Chem 68: 9308–9318. [CrossRef] [PubMed] [Google Scholar]
  • Lin F-H, Lin J-Y, Gupta RD, et al. 2005. Ferulic acid stabilizes a solution of vitamins C and E and doubles its photoprotection of skin. J Invest Dermatol 125: 826–832. [CrossRef] [PubMed] [Google Scholar]
  • Milkowski C, Strack D. 2010. Sinapate esters in brassicaceous plants: biochemistry, molecular biology, evolution and metabolic engineering. Planta 232: 19–35. [CrossRef] [PubMed] [Google Scholar]
  • Millet M, Poupard P, Guilois-Dubois S, Zanchi D, Guyot S. 2019. Self-aggregation of oxidized procyanidins contributes to the formation of heat-reversible haze in apple-based liqueur wine. Food Chem 276: 797–805. [CrossRef] [PubMed] [Google Scholar]
  • Mosenthin R, Messerschmidt U, Sauer N, Carré P, Quinsac A, Schöne F. 2016. Effect of the desolventizing/toasting process on chemical composition and protein quality of rapeseed meal. J Anim Sci Biotechnol 7: 36. [CrossRef] [PubMed] [Google Scholar]
  • Naczk M, Shahidi F. 2004. Extraction and analysis of phenolics in food. J Chromatogr A 1054: 95–111. [CrossRef] [PubMed] [Google Scholar]
  • Newkirk R, Classen H. 2002. The effects of toasting canola meal on body weight, feed conversion efficiency, and mortality in broiler chickens. Poult Sci 81: 815–825. [CrossRef] [PubMed] [Google Scholar]
  • Ouerghemmi I, Bettaieb Rebey I, Rahali FZ, et al. 2017. Antioxidant and antimicrobial phenolic compounds from extracts of cultivated and wild-grown Tunisian Ruta chalepensis. J Food Drug Anal 25: 350–359. [CrossRef] [PubMed] [Google Scholar]
  • Ozdal T, Capanoglu E, Altay F. 2013. A review on protein–phenolic interactions and associated changes. Food Res Int 51: 954–970. [CrossRef] [Google Scholar]
  • Pająk P, Socha R, Gałkowska D, Rożnowski J, Fortuna T. 2014. Phenolic profile and antioxidant activity in selected seeds and sprouts. Food Chem 143: 300–306. [CrossRef] [PubMed] [Google Scholar]
  • Pedrosa MM, Muzquiz M, García-Vallejo C, et al. 2000. Determination of caffeic and chlorogenic acids and their derivatives in different sunflower seeds. J Sci Food Agric 80: 459–464. [CrossRef] [Google Scholar]
  • Pérez-Serradilla JA, Luque de Castro MD. 2011. Microwave-assisted extraction of phenolic compounds from wine lees and spray-drying of the extract. Food Chem 124: 1652–1659. [CrossRef] [Google Scholar]
  • Peyrot C, Mention MM, Brunissen F, Allais F. 2020. Sinapic acid esters: octinoxate substitutes combining suitable uv protection and antioxidant activity. Antioxidants 9: 782. [CrossRef] [Google Scholar]
  • Porter LJ, Hrstich LN, Chan BG. 1985. The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin. Phytochemistry 25: 223–230. [CrossRef] [Google Scholar]
  • Prates JAM, Tarbouriech N, Charnock SJ, Fontes CMGA, Ferreira LMA, Davies GJ. 2001. The structure of the feruloyl esterase module of xylanase 10B from clostridium thermocellum provides insights into substrate recognition. Structure 9: 1183–1190. [CrossRef] [PubMed] [Google Scholar]
  • Ramos-de-la-Peña AM, Contreras-Esquivel JC. 2016. Methods and substrates for feruloyl esterase activity detection, a review. J Mol Catal B Enzym 130: 74–87. [CrossRef] [Google Scholar]
  • Reano AF, Chérubin J, Peru AMM, et al. 2015. Structure–activity relationships and structural design optimization of a series of p–hydroxycinnamic acids-based bis- and trisphenols as novel sustainable antiradical/antioxidant additives. ACS Sustain Chem Eng 3: 3486–3496. [CrossRef] [Google Scholar]
  • Salazar-Villanea S, Bruininx EMAM, Gruppen H, et al. 2016. Physical and chemical changes of rapeseed meal proteins during toasting and their effects on in vitro digestibility. J Anim Sci Biotechnol 7:62. [CrossRef] [PubMed] [Google Scholar]
  • Salazar-Villanea S, Bruininx EMAM, Gruppen H, Carré P, Quinsac A, van der Poel AFB. 2017. Effects of toasting time on digestive hydrolysis of soluble and insoluble 00-rapeseed meal proteins. J Am Oil Chem Soc 94: 619–630. [CrossRef] [Google Scholar]
  • Shahidi F, Ambigaipalan P. 2015. Phenolics and polyphenolics in foods, beverages and spices: antioxidant activity and health effects – A review. J Funct Foods 18: 820–897. [CrossRef] [Google Scholar]
  • Siger A, Czubinski J, Dwiecki K, Kachlicki P, Nogala-Kalucka M. 2013. Identification and antioxidant activity of sinapic acid derivatives in Brassica napus L. seed meal extracts: main phenolic compounds in rapeseed. Eur J Lipid Sci Technol 115: 1130–1138. [Google Scholar]
  • Sørensen A-DM, Durand E, Laguerre M, et al. 2014. Antioxidant properties and efficacies of synthesized alkyl caffeates, ferulates, and coumarates. J Agric Food Chem 62: 12553–12562. [CrossRef] [PubMed] [Google Scholar]
  • Stalikas CD. 2007. Extraction, separation, and detection methods for phenolic acids and flavonoids. J Sep Sci 30: 3268–3295. [CrossRef] [PubMed] [Google Scholar]
  • Szydłowska-Czerniak A, Trokowski K, Szłyk E. 2011. Optimization of extraction conditions of antioxidants from sunflower shells (Helianthus annuus L.) before and after enzymatic treatment. Ind Crops Prod 33: 123–131. [CrossRef] [Google Scholar]
  • Terres Inovia, Terres Univia. 2019. Fiche qualité des tourteaux de colza et tournesol. Available from [last consult: 2020/31/08] and [last consult: 2020/31/08]. [Google Scholar]
  • Weisz GM, Kammerer DR, Carle R. 2009. Identification and quantification of phenolic compounds from sunflower (Helianthus annuus L.) kernels and shells by HPLC-DAD/ESI-MSn. Food Chem 115: 758–765. [CrossRef] [Google Scholar]
  • Wildermuth SR, Young EE, Were LM. 2016. Chlorogenic acid oxidation and its reaction with sunflower proteins to form green-colored complexes. Compr Rev Food Sci Food Saf 15: 829–843. [CrossRef] [Google Scholar]
  • Wischer G, Boguhn J, Steingaß H, Schollenberger M, Rodehutscord M. 2013. Effects of different tannin-rich extracts and rapeseed tannin monomers on methane formation and microbial protein synthesis in vitro. Animal 7: 1796–1805. [CrossRef] [PubMed] [Google Scholar]
  • Zago E, Durand E, Barouh N, Lecomte J, Villeneuve P, Aouf C. 2015a. Synthesis of lipophilic antioxidants by a lipase-b-catalyzed addition of peracids to the double bond of 4-vinyl-2-methoxyphenol. J Agric Food Chem 63: 9069–9075. [CrossRef] [PubMed] [Google Scholar]
  • Zago E, Lecomte J, Barouh N, et al. 2015b. Influence of rapeseed meal treatments on its total phenolic content and composition in sinapine, sinapic acid and canolol. Ind Crops Prod 76: 1061–1070. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.