Numéro
OCL
Volume 27, 2020
Minor oils from atypical plant sources / Huiles mineures de sources végétales atypiques
Numéro d'article 40
Nombre de pages 7
Section Quality − Food safety
DOI https://doi.org/10.1051/ocl/2020031
Publié en ligne 4 août 2020
  • Aktaş N, Gerçekaslan KE, Nevşehir TU. 2018. The effect of some pre-roasting treatments on quality characteristics of pumpkin seed oil. OCL 25: A301. [CrossRef] [EDP Sciences] [Google Scholar]
  • Akwaowo EU, Ndon BA, Etuk EU. 2000. Minerals and antinutrients in fluted pumpkin (Telfairia occidentalis Hook f.). Food Chem 70: 235–240. [Google Scholar]
  • Alfawaz MA. 2004. Chemical composition and oil characteristics of pumpkin (Cucurbita maxima) seed kernels. J King Saud Univ Agric Sci 129: 5–18. [Google Scholar]
  • Alireza S, Tan CP, Mirhosseini H, Che Man YB. 2010. Effect of frying process on fatty acid composition and iodine value of selected vegetable oils and their blends. Int Food Res J 17: 295–302. [Google Scholar]
  • Al-Khalifa S. 1996. Physicochemical characteristics, fatty acid composition, and lipoxygenase activity of crude pumpkin and melon seed oils. J Agric Food Chem 44: 964–966. [Google Scholar]
  • AOCS. 1997. Official methods and recommended practices of the American oil Chemists’ Society, 5th ed. Champaign, USA: AOCS Press. [Google Scholar]
  • Ardabili AG, Farhoosh R, Khodaparast Haddad MH. 2011. Chemical composition and physicochemical properties of pumpkin seeds (Cucurbita pepo subsp. Pepo var. Styriaka) grown in Iran. J Agric Sci Tech 13: 1053–1063. [Google Scholar]
  • Bardaa S, Ben Halima N, Aloui F, et al. 2016. Oil from pumpkin (Cucurbita pepo L.) seeds: evaluation of its functional properties on wound healing in rats. Lipids Health Dis 15: 73. [CrossRef] [PubMed] [Google Scholar]
  • Boulfane S, Maata N, Anouar A, Hilali S. 2015. Caractérisation physicochimique des huiles d’olive produites dans les huileries traditionnelles de la région de la Chaouia-Maroc. J Appl Biosci 87: 8022–8029. [CrossRef] [Google Scholar]
  • Caili F, Huan S, Quanhong L. 2006. A review on pharmacological activities and utilization technologies of pumpkin. Plant Foods Hum Nutr 61: 73–80. [Google Scholar]
  • Codex Alimentarius Commission. 2015. Joint FAO/WHO food standards programme codex committee on contaminants in foods. 5th Session, The Hague, the Netherlands. [Google Scholar]
  • Cuco RP, Massa TB, Postaue N, et al. 2019. Oil extraction from structured bed of pumpkin seeds and peel using compressed propane as solvent. J Supercrit Fluids 152: 104568. [Google Scholar]
  • Debasis N, Sarbani A, Pradipta RR, Bismita N. 2017. Assessment of antioxidant, antimicrobial and anti-osteosarcoma potential of four traditionally used Indian medicinal plants. J Appl Biomed 15: 119–132. [Google Scholar]
  • Dhiman AK, Sharma K, Attri S. 2009. Functional constituents and processing of pumpkin: a review. J Food Sci Technol 46: 411–417. [Google Scholar]
  • Gharby S, Harhar H, Farssi M, et al. 2018. Influence of roasting olive fruit on the chemical composition and polycyclic aromatic hydrocarbon content of olive oil. OCL 25: A303. [CrossRef] [EDP Sciences] [Google Scholar]
  • Gossell-Williams M, Davis A, O’Connor N. 2006. Inhibition of testosterone-induced hyperplasia of the prostate of Sprague-Dawley rats by pumpkin seed oil. J Med Food 9: 284–286. [CrossRef] [PubMed] [Google Scholar]
  • Habib A, Biswas S, Siddique AH, et al. 2015. Nutritional and lipid composition analysis of pumpkin seed (Cucurbita maxima Linn.). J Nutr Food Sci 5: 4. [Google Scholar]
  • Hernández-Santos B, Rodríguez-Miranda J, Herman-Lara E, et al. 2016. Effect of oil extraction assisted by ultrasound on the physicochemical properties and fatty acid profile of pumpkin seed oil (Cucurbita pepo). Ultrason Sonochem 31: 429–436. [CrossRef] [PubMed] [Google Scholar]
  • Harhar H, Gharby S, El Idrissi Y, et al. 2019. Effect of maturity stage on the chemical composition of argan fruit pulp. OCL 26: 15. [CrossRef] [EDP Sciences] [Google Scholar]
  • Indrianingsih AW, Rosyida VT, Apriyana W, et al. 2019. Comparisons of antioxidant activities of two varieties of pumpkin (Cucurbita moschata and Cucurbita maxima) extracts. IOP Conf Ser Earth Environ Sci 251: 012021. [CrossRef] [Google Scholar]
  • ISO 5508. 1990. Animal and vegetable fats and oils − analysis by gas chromatography of methyl esters of fatty acids. [Google Scholar]
  • ISO 6799. 1991. Determination of the sterol fraction by gas chromatography. [Google Scholar]
  • ISO 9936. 2006. Animal fats and vegetable “determination of tocopherols and tocotrienols by liquid chromatography high performance”. [Google Scholar]
  • Kim MY, Kim EJ, Kim YN, et al. 2012. Comparison of the chemical compositions and nutritive values of various pumpkin (Cucurbitaceae) species and parts. Nutr Res Pract 6: 21–27. [PubMed] [Google Scholar]
  • Kulaitienė J, Černiauskienė J, Jarienė E, et al. 2018. Antioxidant activity and other quality parameters of cold pressing pumpkin seed oil. Not Bot Horti Agrobo 46: 161–166. [CrossRef] [Google Scholar]
  • Kulczyński B, Gramza-Michałowska A. 2019. The profile of carotenoids and other bioactive molecules in various pumpkin fruits (Cucurbita maxima Duchesne) cultivars. Molecules 24: 3212. [Google Scholar]
  • Lampi A, Kataja L, Kamal-Eldin A, et al. 1999. Antioxidant activities of α- and γ-tocopherols in the oxidation of rapeseed oil triacylglycerols. J Am Oil Chem Soc 76: 749–755. [Google Scholar]
  • Latif S, Anwar F. 2011. Aqueous enzymatic sesame oil and protein extraction. Food Chem 125: 679–684. [Google Scholar]
  • Lyimo ME, Shayo NB, Kasanga A. 2012. Physical-chemical properties, storage stability and sensory evaluation of pumpkin seed oil. J Open Univ Tanzan 12: 110–117. [Google Scholar]
  • Murkovic M, Hillebrand A, Winkler J, Pfannhauser W. 1996. Variability of vitamin E content in pumpkin seeds (Cucurbita pepo L.). Z Lebensm Unters Forsch 202: 275–278. [CrossRef] [PubMed] [Google Scholar]
  • Murkovic M, Pfannhauser W. 2000. Stability of pumpkin seed oil. Eur J Lipid Sci Tech 102: 607–611. [CrossRef] [Google Scholar]
  • Nakić SN, Rade D, Škevin D, et al. 2006. Chemical characteristics of oils from naked and husk seeds of Cucurbita pepo L. Eur J Lipid Sci Technol 108: 936–943. [Google Scholar]
  • Nichols DS, Sanderson K. The nomenclature structure and properties of food lipids. In: Sikorski ZE, Kolakowska A, eds. Chemical and functional properties of food lipids. New York: CRC Press, 2003, pp. 1–31. [Google Scholar]
  • Perez-Gutierrez RM. 2016. Review of Cucurbita pepo (pumpkin) its phytochemistry and pharmacology. Med Chem 6: 12–21. [Google Scholar]
  • Petkova Z, Antova G. 2019. A comparative study on quality parameters of pumpkin, melon and sunflower oils during thermal treatment. OCL 26: 32. [CrossRef] [EDP Sciences] [Google Scholar]
  • Phillips KM, Ruggio DM, Ashraf-Khorassani M. 2005. Phytosterol composition of nuts and seeds commonly consumed in the United States. J Agric Food Chem 53: 9436–9445. [CrossRef] [PubMed] [Google Scholar]
  • Rabrenovic BB, Dimic EB, Novakovic MM, et al. 2014. The most important bioactive components of cold pressed oil from different pumpkin (Cucurbita pepo L.) seeds. LWT-Food Sci Technol 55: 521–527. [CrossRef] [Google Scholar]
  • Rezig L, Chouaibi M, Msaada K, Hamdi S. 2012. Chemical composition and profile characterisation of pumpkin (Cucurbita maxima) seed oil. Ind Crop Prod 37: 82–87. [CrossRef] [Google Scholar]
  • Ryan E, Galvin K, O’Connor TP, et al. 2007. Phytosterol, squalene, tocopherol content and fatty acid profile of selected seeds, grains, and legumes. Plant Foods Hum Nutr 62: 85–91. [CrossRef] [PubMed] [Google Scholar]
  • Sabudak T. 2007. Fatty acid composition of seed and leaf oils of pumpkin, walnut almond, maize, sunflower and melon. Chem Nat Compd 43: 465–467. [Google Scholar]
  • Seo JS, Burri BJ, Quan Z, Neidlinger TR. 2005. Extraction and chromatography of carotenoids from pumpkin. J Chromatogr A 1073: 371–375. [CrossRef] [PubMed] [Google Scholar]
  • Stevenson DG, Eller FJ, Wang L, et al. 2007. Oil and tocopherol content and composition of pumpkin seed oil in 12 cultivars. J Agric Food Chem 55: 4005–4013. [CrossRef] [PubMed] [Google Scholar]
  • Tsai YS, Tong YC, Cheng JT, et al. 2006. Pumpkin seed oil and phytosterol-F can block testosterone/prazosin-induced prostate growth in rats. Urol Int 77: 269–274. [CrossRef] [PubMed] [Google Scholar]
  • Vogel P. 1978. Untersuchungen uber Kurbiskernol. Fette Seifen Anstr 80: 315–317. [CrossRef] [Google Scholar]
  • Walters SA, Bouharroud R, Mimouni A, Wifaya A. 2018. The deterioration of Morocco’s vegetable crop genetic diversity: an analysis of the Souss-Massa region. Agriculture 8: 49. [CrossRef] [Google Scholar]
  • Xanthopoulou MN, Nomikos T, Fragopoulou E, Antonopoulou S. 2009. Antioxidant and lipoxygenase inhibitory activities of pumpkin seed extracts. Food Res Int 42: 641–646. [Google Scholar]
  • Xu G, Liu D, Chen J. 2008. Juice components and antioxidant capacity of citrus varieties cultivated in China. Food Chem 106: 545–551. [Google Scholar]
  • Yadav M, Jain S, Tomar R, et al. 2010. Medicinal and biological potential of pumpkin: an updated review. Nutr Res Rev 23: 184–190. [PubMed] [Google Scholar]
  • Zhang S, Zu YG, Fu YJ, et al. 2010. Supercritical carbon dioxide extraction of seed oil from yellow horn (Xanthoceras sorbifolia Bunge.) and its anti-oxidant activity. Bioresour Technol 101: 2537–2544. [Google Scholar]
  • Ziaul MA, Tehera I, Farhana M, et al. 2019. Comparative assessment of the physicochemical and biochemical properties of native and hybrid varieties of pumpkin seed and seed oil (Cucurbita maxima Linn.). Heliyon 5: e02994. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.