Numéro
OCL
Volume 27, 2020
Innovative Cropping Systems / Systèmes innovants de culture
Numéro d'article 59
Nombre de pages 15
DOI https://doi.org/10.1051/ocl/2020052
Publié en ligne 9 novembre 2020
  • Abideen SNU, Nadeem F, Abideen SA. 2013. Genetic variability and correlation studies in Brassica napus L. genotypes. Int J Inn Appl St 2(4): 574–581. [Google Scholar]
  • Altieri MA. 1999. The ecological role of biodiversity in agroecosystems. Agric Ecosyst Environ 74: 19–31. [Google Scholar]
  • Angus JF, Gardner PA, Kirkegaard JA, Desmarchelier JM. 1994. Biofumigation: isothiocyanates released from brassica roots inhibit growth of the take-all fungus. Plant Soil 162: 107–112. [Google Scholar]
  • Barzman M, Bàrberi P, Birch ANE, et al. 2015. Eight principles of integrated pest management. Agron Sustain Dev 35: 1199–1215. [Google Scholar]
  • Beilstein MA, Al-Shehbaz IA, Kellogg EA. 2006. Brassicaceae phylogeny and trichome evolution. Am J Bot 93(4): 607–619. [PubMed] [Google Scholar]
  • Bellostas N, Sørensen JC, Sørensen H. 2004. Qualitative and quantitative evaluation of glucosinolates in cruciferous plants during their life cycles. Agroindustria 3(3): 5–10. [Google Scholar]
  • Bending GD, Lincoln SD. 1999. Characterisation of volatile sulphur-containing compounds produced during decomposition of Brassica juncea tissues in soil. Soil Biol Biochem 31(5): 695–703. [Google Scholar]
  • Bending GD, Lincoln SD. 2000. Inhibition of soil nitrifying bacteria communities and their activities by glucosinolate hydrolysis products. Soil Biol Biochem 32(8–9): 1261–1269. [Google Scholar]
  • Berbegal M, García-Jiménez J, Armengol J. 2008. Effect of cauliflower residue amendments and soil solarization on Verticillium wilt control in artichoke. Plant Dis 92(4): 595–600. [CrossRef] [PubMed] [Google Scholar]
  • Bhandari SR, Jo JS, Lee JG. 2015. Comparison of glucosinolate profiles in different tissues of nine Brassica crops. Molecules 20(9): 15827–15841. [CrossRef] [PubMed] [Google Scholar]
  • Boag B, Smith WM, Griffiths DW. 1990. Observations on the grazing of double low oilseed rape and other crops by roe deer. Appl Anim Behav Sci 28(3): 213–220. [Google Scholar]
  • Booth EJ, Walker KC, Griffiths DW. 1991. A time-course study of the effect of sulphur on glucosinolates in oilseed rape (Brassica napus) from the vegetative stage to maturity. J Sci Food Agric 56(4): 479–493. [Google Scholar]
  • Borek V, Elberson LR, McCaffrey JP, Morra MJ. 1995a. Toxicity of aliphatic and aromatic isothiocyanates to eggs of the black vine weevil (Coleoptera: Curculionidae). J Econ Entomol 88(5): 1192–1196. [Google Scholar]
  • Borek V, Morra MJ, Brown PD, McCaffrey JP. 1995b. Transformation of the glucosinolate-derived allelochemicals allyl isothiocyanate and allylnitrile in soil. J Agric Food Chem 43(7): 1935–1940. [Google Scholar]
  • Borek V, Elberson LR, McCaffrey JP, Morra MJ. 1998. Toxicity of isothiocyanates produced by glucosinolates in Brassicaceae species to black vine weevil eggs. J Agric Food Chem 46(12): 5318–5323. [Google Scholar]
  • Borek V, Morra MJ. 2005. Ionic thiocyanate (SCN-) production from 4-hydroxybenzyl glucosinolate contained in Sinapis alba seed meal. J Agric Food Chem 53(22): 8650–8654. [CrossRef] [PubMed] [Google Scholar]
  • Brown PD, Morra MJ, McCaffrey JP, Auld DL, Williams L. 1991. Allelochemicals produced during glucosinolate degradation in soil. J Chem Ecol 17(10): 2021–2034. [CrossRef] [PubMed] [Google Scholar]
  • Brown PD, Morra MJ. 1997. Control of soil-borne plant pests using glucosinolate containing plants. Adv Agron 61: 167–231. [CrossRef] [Google Scholar]
  • Chapagain T, Lee EA, Raizada MN. 2020. The potential of multi-species mixtures to diversify cover crop benefits. Sustainability 12(2058): 1–16. [Google Scholar]
  • Clarkson J, Michel V, Neilson R. 2015. Mini-paper-Biofumigation for the control of soil-borne diseases. Available from http://ec.europa.eu/eip/agriculture/sites/agri-eip/files/9_eip_sbd_mp_biofumigation_final_0.pdf. [Google Scholar]
  • Constantin J, Beaudoin N, Laurent F, Cohan JP, Duyme F, Mary B. 2011. Cumulative effects of catch crops on nitrogen uptake, leaching and net mineralization. Plant Soil 341: 137–154. [Google Scholar]
  • Ćosić J, Jurković D, Vrandečić K, Kaučić D. 2012. Survival of buried Sclerotinia sclerotiorum sclerotia in undisturbed soil. Helia 35(56): 73–78. [CrossRef] [Google Scholar]
  • Couëdel A, Alletto L, Tribouillois H, Justes E. 2018a. Cover crop crucifer-legume mixtures provide effective nitrate catch crop and nitrogen green manure ecosystem services. Agric Ecosyst Environ 254: 50–59. [Google Scholar]
  • Couëdel A, Alletto L, Justes E. 2018b. Crucifer-legume cover crop mixtures provide effective sulphate catch crop and sulphur green manure services. Plant Soil 426(1–2): 61–76. [Google Scholar]
  • Couëdel A, Alletto L, Kirkegaard J, Justes E. 2018c. Crucifer glucosinolate production in legume-crucifer cover crop mixtures. Eur J Agron 96: 22–33. [Google Scholar]
  • Couëdel A, Kirkegaard J, Alletto L, Justes E. 2019. Crucifer-legume cover crop mixtures for biocontrol: toward a new multi-service paradigm. Adv Agron 157: 55–139. [CrossRef] [Google Scholar]
  • Davis JR, Huisman OC, Westermann DT, et al. 1996. Effects of green manures on Verticillium wilt of potato. Phytopathology 86(5): 444–453. [Google Scholar]
  • Davis JR, Huisman OC, Everson DO, Nolte P, Sorensen LH, Schneider AT. 2010. Ecological relationships of Verticillium wilt suppression of potato by green manures. Am J Potato Res 87(4): 315–326. [CrossRef] [Google Scholar]
  • Debaeke P, Casadebaig P, Flenet F, Langlade N. 2017a. Sunflower crop and climate change: vulnerability, adaptation, and mitigation potential from case-studies in Europe. OCL 24(1): D102. [CrossRef] [EDP Sciences] [Google Scholar]
  • Debaeke P, Bedoussac L, Bonnet C, et al. 2017b. Sunflower crop: environmental-friendly and agroecological. OCL 24(3): D304. [CrossRef] [EDP Sciences] [Google Scholar]
  • Di Primo P, Gamliel A, Austerweil M, et al. 2003. Accelerated degradation of metam-sodium and dazomet in soil: characterization and consequences for pathogen control. Crop Prot 22(4): 635–646. [Google Scholar]
  • Dufour V, Stahl M, Baysse C. 2015. The antibacterial properties of isothiocyanates. Microbiology 161(2): 229–243. [CrossRef] [PubMed] [Google Scholar]
  • Dungan RS, Gan J, Yates SR. 2003. Accelerated degradation of methyl isothiocyanate in soil. Water Air Soil Poll 142(1–4): 299–310. [CrossRef] [Google Scholar]
  • Duniway JM. 2002. Status of chemical alternatives to methyl bromide for pre-plant fumigation of soil. Phytopathology 92(12): 1337–1343. [CrossRef] [PubMed] [Google Scholar]
  • Fan CM, Xiong GR, Qi P, Ji GH, He YQ. 2008. Potential biofumigation effects of Brassica oleracea var. caulorapa on growth of fungi. J Phytopathol 156(6): 321–325. [CrossRef] [Google Scholar]
  • FAOSTAT. 2020. Available from http://www.fao.org/faostat/fr (last consult 30/06/2020). [Google Scholar]
  • FAO. 2018. FAO food outlook July 2018. Available from http://www.fao.org/3/ca0239en/CA0239EN.pdf (last consult 30/06/2020). [Google Scholar]
  • FAO. 2020. FAO food outlook June 2020. Available from http://www.fao.org/3/ca9509en/ca9509en.pdf (last consult 30/06/2020). [Google Scholar]
  • Fayzalla EA, El-Barougy E, El-Rayes MM. 2009. Control of soil-borne pathogenic fungi of soybean by biofumigation with mustard seed meal. J Appl Sci 9(12): 2272–2279. [CrossRef] [Google Scholar]
  • Fenwick GR, Heaney RK, Mullin WJ, VanEtten CH. 1983. Glucosinolates and their breakdown products in food and food plants. CRC Crit Rev Food Sci Nutr 18(2): 123–201. [Google Scholar]
  • Gardiner JB, Morra MJ, Eberlein CV, Brown PD, Borek V. 1999. Allelochemicals released in soil following incorporation of rapeseed (Brassica napus) green manures. J Agric Food Chem 47(9): 3837–3842. [CrossRef] [PubMed] [Google Scholar]
  • Garibaldi A, Gilardi G, Clematis F, Gullino ML, Lazzeri L, Malaguti L. 2009. Effect of green Brassica manure and Brassica defatted seed meals in combination with grafting and soil solarization against Verticillium wilt of eggplant and Fusarium wilt of lettuce and basil. In: 7th International Symposium on Chemical and Non-Chemical Soil and Substrate Disinfestation, Leuven, Belgium, Sep. 13–18, 2009. Conference Proceedings, p. 295. [Google Scholar]
  • Gimsing AL, Kirkegaard JA. 2006. Glucosinolate and isothiocyanate concentration in soil following incorporation of Brassica biofumigants. Soil Biol Biochem 38(8): 2255–2264. [Google Scholar]
  • Gimsing AL, Kirkegaard JA. 2009. Glucosinolates and biofumigation: fate of glucosinolates and their hydrolysis products in soil. Phytochem Rev 8: 299–310. [Google Scholar]
  • Goldman GH, Hayes C, Harman GE. 1994. Molecular and cellular biology of biocontrol by Trichoderma spp. Trends Biotechnol 12(12): 478–482. [CrossRef] [PubMed] [Google Scholar]
  • Haramoto ER, Gallandt ER. 2004. Brassica cover cropping for weed management: a review. Renew Agric Food Syst 19(4): 187–198. [CrossRef] [Google Scholar]
  • Harris HC, McWilliams JR, Mason WK. 1978. Influence of temperature on oil content and composition of sunflower seed. Aust J Agric Res 29: 1203–1212. [Google Scholar]
  • Hartz TK, Johnstone PR, Miyao EM, Davis RM. 2005. Mustard cover crops are ineffective in suppressing soilborne disease or improving processing tomato yield. HortScience 40(7): 2016–2019. [Google Scholar]
  • Hoffmann GM, Malkomes HP. 1974. Bromide residues in vegetable crops after soil fumigation with methyl bromide. Agric Environ 1(3): 321–328. [CrossRef] [Google Scholar]
  • Höglund AS, Rödin J, Larsson E, Rask L. 1992. Distribution of napin and cruciferin in developing rape seed embryos. Plant Physiol 98(2): 509–515. [Google Scholar]
  • Ibekwe AM. 2004. Effects of fumigants on non-target organisms in soils. Adv Agron 83: 2–37. [Google Scholar]
  • Iversen TH, Baggerud C. 1980. Myrosinase activity in differentiated and undifferentiated plants of Brassicaceae. Z Pflanzenphysiol 97(5): 399–407. [CrossRef] [Google Scholar]
  • Jensen ES. 1996. Grain yield, symbiotic N 2 fixation and interspecific competition for inorganic N in pea-barley intercrops. Plant Soil 182(1): 25–38. [Google Scholar]
  • Justes E, Richard G. 2017. Contexte, concepts et définition des cultures intermédiaires multi-services. Innov Agron 62: 1–15. [Google Scholar]
  • Justes E, Beaudoin N, Bertuzzi P, et al. 2012. The use of cover crops to reduce nitrate leaching: effect on the water and nitrogen balance and other ecosystem services. Synopsis of the study report. France: INRA, 68 p. [Google Scholar]
  • Katan J. 1981. Solar heating (solarization) of soil for control of soilborne pests. Annu Rev Phytopathol 19(1): 211–236. [Google Scholar]
  • Kirkegaard JA, Gardner PA, Desmarchelier JM, Angus JF. 1993. Biofumigation: using Brassica species to control pests and diseases in horticulture and agriculture. In: 9th Australian Research Assembly on Brassicas, Wagga Wagga, Australia, Oct. 5–7, 1993. Conference Proceedings, p. 77. [Google Scholar]
  • Kirkegaard JA, Sarwar M. 1998. Biofumigation potential of brassicas, I. Variation in glucosinolate profiles of diverse field-grown brassicas. Plant Soil 201: 71–89. [Google Scholar]
  • Kirkegaard JA, Sarwar M, Wong PTW, Mead A, Howe G, Newell M. 2000. Field studies on the biofumigation of take-all by Brassica break crops. Aust J Agric Res 51: 445–456. [Google Scholar]
  • Kirkegaard JA, Matthiessen JN. 2004. Developing and refining the biofumigation concept. Agroindustria 3(3): 233–239. [Google Scholar]
  • Kruger DHM, Fourie JC, Malan AP. 2013. Cover crops with biofumigation properties for the suppression of plant-parasitic nematodes: a review. S Afr J Enol Vitic 34(2): 287–295. [Google Scholar]
  • Kurt Ş, Güneş U, Soylu EM. 2011. In vitro and in vivo antifungal activity of synthetic pure isothiocyanates against Sclerotinia sclerotiorum. Pest Manag Sci 67(7): 869–875. [CrossRef] [PubMed] [Google Scholar]
  • Laegdsmand M, Gimsing AL, Strobel BW, Sørensen JC, Jacobsen OH, Hansen HCB. 2007. Leaching of isothiocyanates through intact soil following simulated biofumigation. Plant Soil 291(1–2): 81–92. [Google Scholar]
  • Lamichhane JR, Constantin J, Schoving C, et al. 2020. Analysis of soybean germination, emergence, and prediction of a possible northward establishment of the crop under climate change. Eur J Agron 113: 125972. [Google Scholar]
  • Larkin RP, Griffin TS, Honeycutt CW. 2010. Rotation and cover crop effects on soilborne potato diseases, tuber yield, and soil microbial communities. Plant Dis 94(12): 1491–1502. [CrossRef] [PubMed] [Google Scholar]
  • Lazzeri L, Tacconi R, Palmieri S. 1993. In vitro activity of some glucosinolates and their reaction products toward a population of the nematode Heterodera schachtii. J Agric Food Chem 41(5): 825–829. [Google Scholar]
  • Lazzeri L, Curto G, Leoni O, Dallavalle E. 2004. Effects of glucosinolates and their enzymatic hydrolysis products via myrosinase on the root-knot nematode Meloidogyne incognita (Kofoid et White) Chitw. J Agric Food Chem 52(22): 6703–6707. [CrossRef] [PubMed] [Google Scholar]
  • Li S, Schonhof I, Krumbein A, Li L, Stützel H, Schreiner M. 2007. Glucosinolate concentration in turnip (Brassica rapa ssp. rapifera L.) roots as affected by nitrogen and sulfur supply. J Agric Food Chem 55(21): 8452–8457. [CrossRef] [PubMed] [Google Scholar]
  • Macalady JL, Fuller ME, Scow KM. 1998. Effects of metam sodium fumigation on soil microbial activity and community structure. J Environ Qual 27(1): 54–63. [Google Scholar]
  • Manici LM, Lazzeri L, Palmieri S. 1997. In vitro fungitoxic activity of some glucosinolates and their enzyme-derived products toward plant pathogenic fungi. J Agric Food Chem 45(7): 2768–2773. [Google Scholar]
  • Manici LM, Lazzeri L, Baruzzi G, Leoni O, Galletti S, Palmieri S. 2000. Suppressive activity of some glucosinolate enzyme degradation products on Pythium irregulare and Rhizoctonia solani in sterile soil. Pest Manag Sci 56(10): 921–926. [Google Scholar]
  • Martin MJ, Riedel RM, Rowe RC. 1982. Verticillium dahliae and Pratylenchus penetrans: interactions in the early dying complex of potato in Ohio. Phytopathology 72(6): 640–644. [Google Scholar]
  • Martin FN. 2003. Development of alternative strategies for management of soilborne pathogens currently controlled with methyl bromide. Annu Rev Phytopathol 41(1): 325–350. [CrossRef] [PubMed] [Google Scholar]
  • Martín-Sanz A, Rueda S, García-Carneros AB, Molinero-Ruiz L. 2018. Cadophora malorum, a new threat for sunflower production in Russia and Ukraine. In: International Symposium, Sunflower and Climate Change, Toulouse, France, Feb. 5–6, 2018. Conference Proceedings, p. 52. [Google Scholar]
  • Matthiessen JN, Warton B, Shackleton MA. 2004. The importance of plant maceration and water addition in achieving high Brassica-derived isothiocyanate levels in soil. Agroindustria 3(3): 277–281. [Google Scholar]
  • Matthiessen JN, Shackleton MA. 2005. Biofumigation: environmental impacts on the biological activity of diverse pure and plant-derived isothiocyanates. Pest Manag Sci 61(11): 1043–1051. [CrossRef] [PubMed] [Google Scholar]
  • Matthiessen JN, Kirkegaard J. 2006. Biofumigation and enhanced biodegradation: opportunity and challenge in soilborne pest and disease management. Crit Rev Plant Sci 25: 235–265. [CrossRef] [Google Scholar]
  • Mawar R, Lodha S. 2002. Brassica amendments and summer irrigation for the control of Macrophomina phaseolina and Fusarium oxysporum f. sp. cumini in hot arid region. Phytopathol Mediterr 41(1): 45–54. [Google Scholar]
  • Mazzola M, Granatstein DM, Elfving DC, Mullinix K. 2001. Suppression of specific apple root pathogens by Brassica napus seed meal amendment regardless of glucosinolate content. Phytopathology 91(7): 673–679. [CrossRef] [PubMed] [Google Scholar]
  • Mazzola M, Brown J, Izzo AD, Cohen MF. 2007. Mechanism of action and efficacy of seed meal-induced pathogen suppression differ in a Brassicaceae species and time-dependent manner. Phytopathology 97(4): 454–460. [CrossRef] [PubMed] [Google Scholar]
  • Mazzola M, Agostini A, Cohen MF. 2017. Incorporation of Brassica seed meal soil amendment and wheat cultivation for control of Macrophomina phaseolina in strawberry. Eur J Plant Pathol 149(1): 57–71. [Google Scholar]
  • Médiène S, Valantin-Morison M, Sarthou JP, et al. 2011. Agroecosystem management and biotic interactions: a review. Agron Sustain Dev 31(3): 491–514. [Google Scholar]
  • Michel VV. 2008. Biofumigation − principe et application. Rev Suisse Vitic Arboric Hortic 40(2): 95–99. [Google Scholar]
  • Michel VV, Dahal-Tscherrig S, Ahmed H, Dutheil A. 2008. Biofumigation to control Verticillium wilt of strawberry: potency and pitfalls. In: Workshop on Integrated Soft Fruit Production, East Malling, United Kingdom, Sep. 24–27, 2007. Conference Proceedings, p. 169. [Google Scholar]
  • Michel VV. 2014. Ten years of biofumigation research in Switzerland. Asp Appl Biol 126: 33–42. [Google Scholar]
  • Mithen R. 2001. Glucosinolates − biochemistry, genetics and biological activity. Plant Growth Regul 34(1): 91–103. [Google Scholar]
  • Mol L, Scholte K, Vos J. 1995. Effects of crop rotation and removal of crop debris on the soil population of two isolates of Verticillium dahliae. Plant Pathol 44(6): 1070–1074. [Google Scholar]
  • Molinero-Ruiz L. 2019. Recent advances on the characterization and control of sunflower soilborne pathogens under climate change conditions. OCL 26: 2. [CrossRef] [EDP Sciences] [Google Scholar]
  • Morra MJ, Kirkegaard JA. 2002. Isothiocyanate release from soil-incorporated Brassica tissues. Soil Biol Biochem 34(11): 1683–1690. [Google Scholar]
  • Morra MJ, Borek V. 2010. Glucosinolate preservation in stored Brassicaceae seed meals. J Stored Prod Res 46(2): 98–102. [Google Scholar]
  • Morris EK, Fletcher R, Veresoglou SD. 2020. Effective methods of biofumigation: a meta-analysis. Plant Soil 446(1): 379–392. [Google Scholar]
  • Motisi N. 2009. Réguler les maladies d’origine tellurique par une culture intermédiaire de Brassicacées : mécanismes d’action et conditions d’expression dans une rotation betterave-blé. Thèse de doctorant. Agrocampus Ouest, Université européenne de Bretagne. [Google Scholar]
  • Motisi N, Montfort F, Faloya V, Lucas P, Doré T. 2009. Growing Brassica juncea as a cover crop, then incorporating its residues provide complementary control of Rhizoctonia root rot of sugar beet. Field Crop Res 113: 238–245. [CrossRef] [Google Scholar]
  • Motisi N, Doré T, Lucas P, Montfort F. 2010. Dealing with the variability in biofumigation efficacy through an epidemiological framework. Soil Biol Biochem 42, 2044–2057. [Google Scholar]
  • Neubauer C, Heitmann B, Müller C. 2014. Biofumigation potential of Brassicaceae cultivars to Verticillium dahliae. Eur J Plant Pathol 140(2): 341–352. [Google Scholar]
  • Neubauer C, Hüntemann K, Heitmann B, Müller C. 2015. Suppression of Verticillium dahliae by glucosinolate-containing seed meal amendments. Eur J Plant Pathol 142(2): 239–249. [Google Scholar]
  • Ntalli N, Caboni P. 2017. A review of isothiocyanates biofumigation activity on plant parasitic nematodes. Phytochem Rev 16(5): 827–834. [Google Scholar]
  • Ochiai N, Powelson ML, Dick RP, Crowe FJ. 2007. Effects of green manure type and amendment rate on Verticillium wilt severity and yield of Russet Burbank potato. Plant Dis 91(4): 400–406. [CrossRef] [PubMed] [Google Scholar]
  • Ochiai N, Powelson ML, Crowe FJ, Dick RP. 2008. Green manure effects on soil quality in relation to suppression of Verticillium wilt of potatoes. Biol Fert Soils 44(8): 1013–1023. [CrossRef] [Google Scholar]
  • Ojaghian MR, Jiang H, Xie GL, Cui ZQ, Zhang J, Li B. 2012. In vitro biofumigation of Brassica tissues against potato stem rot caused by Sclerotinia sclerotiorum. Plant Pathol J 28(2): 185–190. [Google Scholar]
  • Olivier C, Vaughn SF, Mizubuti ES, Loria R. 1999. Variation in allyl isothiocyanate production within Brassica species and correlation with fungicidal activity. J Chem Ecol 25(12): 2687–2701. [Google Scholar]
  • Omirou M, Rousidou C, Bekris F, et al. 2011. The impact of biofumigation and chemical fumigation methods on the structure and function of the soil microbial community. Microb Ecol 61(1): 201–213. [Google Scholar]
  • Pinkerton JN, Ivors KL, Miller ML, Moore LW. 2000. Effect of soil solarization and cover crops on populations of selected soilborne plant pathogens in western Oregon. Plant Dis 84(9): 952–960. [CrossRef] [PubMed] [Google Scholar]
  • Potter MJ, Vanstone VA, Davies KA, Rathjen AJ. 2000. Breeding to increase the concentration of 2-phenylethyl glucosinolate in the roots of Brassica napus. J Chem Ecol 26(8): 1811–1820. [Google Scholar]
  • Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y. 2009. The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321(1–2): 341–361. [Google Scholar]
  • Rahimi F, Rahmanpour S, Rezaee S, Larijani K. 2014. Effect of volatiles derived from Brassica plants on the growth of Sclerotinia sclerotiorum. Arch Phytopathol Pfl 47(1): 15–28. [CrossRef] [Google Scholar]
  • Reau R, Bodet JM, Bordes JP, et al. 2005. Effets allélopathiques des Brassicacées via leurs actions sur les agents pathogènes telluriques et les mycorhizes : analyse bibliographique. Parite 1. OCL 12(3): 261–271. [CrossRef] [EDP Sciences] [Google Scholar]
  • Riga E. 2011. The effects of Brassica green manures on plant parasitic and free living nematodes used in combination with reduced rates of synthetic nematicides. J Nematol 43(2): 119–121. [PubMed] [Google Scholar]
  • Rowe RC, Powelson ML. 2002. Potato early dying: management challenges in a changing production environment. Plant Dis 86(11): 1184–1193. [CrossRef] [PubMed] [Google Scholar]
  • Rumberger A, Marschner P. 2003. 2-phenylethylisothiocyanate concentration and microbial community composition in the rhizosphere of canola. Soil Biol Biochem 35(3): 445–452. [Google Scholar]
  • Šárová J, Kudlikova I, Zalud Z, Veverka K. 2003. Macrophomina phaseolina (Tassi) Goid moving north temperature adaptation or change in climate? J Plant Dis Prot 110: 444–448. [Google Scholar]
  • Sarwar M, Kirkegaard, JA. 1998. Biofumigation potential of brassicas: II. Effect of environment and ontogeny on glucosinolate production and implications for screening. Plant Soil 201(1): 91–101. [Google Scholar]
  • Scholte K, s’Jacob JJ. 1990. Effect of crop rotation, cultivar and nematicide on growth and yield of potato (Solanum tuberosum L.) in short rotations on a marine clay soil. Potato Res 33(2): 191–200. [Google Scholar]
  • Sarwar M, Kirkegaard JA, Wong PTW, Desmarchelier JM. 1998. Biofumigation potential of brassicas, III In vitro toxicity of isothiocyanates to soil-borne fungal pathogens. Plant Soil 201: 103–112. [Google Scholar]
  • Seassau C. 2010. Étiologie du syndrome de dessèchement précoce du tournesol : implication de Phoma macdonaldii et interaction avec la conduite de culture. Thèse de doctorat. INP Toulouse. [Google Scholar]
  • Seassau C, Desserre D, Desplanques J, Mestries E, Dechamp-Guillaume G, Alletto L. 2016. Control of Verticillium dahliae causing sunflower wilt using Brassica cover crops. In: 19th International Sunflower Conference, Edirne, Turkey, Jun. 1–3, 2016. Conference Proceedings, p. 718. [Google Scholar]
  • Sharma SK, Aggarwal RK, Lodha S. 1995. Population changes of Macrophomina phaseolina and Fusarium oxysporum f. sp. cumini in oil-cake and crop residue-amended sandy soils. Appl Soil Ecol 2(4): 281–284. [Google Scholar]
  • Smith BJ, Kirkegaard JA. 2002. In vitro inhibition of soil microorganisms by 2-phenylethyl isothiocyanate. Plant Pathol 51(5): 585–593. [Google Scholar]
  • Subbarao KV, Hubbard JC, Koike ST. 1999. Evaluation of broccoli residue incorporation into field soil for Verticillium wilt control in cauliflower. Plant Dis 83(2): 124–129. [CrossRef] [PubMed] [Google Scholar]
  • Subbarao KV, Kabir Z, Martin FN, Koike ST. 2007. Management of soilborne diseases in strawberry using vegetable rotations. Plant Dis 91(8): 964–972. [CrossRef] [PubMed] [Google Scholar]
  • Therond O, Tichit M, Tibi A, et al. 2017. Volet « écosystèmes agricoles » de l’évaluation française des écosystèmes et des services écosystémiques. Rapport d’étude. France: INRA, 966 p. [Google Scholar]
  • Thorup-Kristensen K, Magid J, Jensen LS. 2003. Catch crops and green manures as biological tools in nitrogen management in temperate zones. Adv Agron 79: 227–302. [CrossRef] [Google Scholar]
  • Van Dam NM, Tytgat TO, Kirkegaard JA. 2009. Root and shoot glucosinolates: a comparison of their diversity, function and interactions in natural and managed ecosystems. Phytochem Rev 8(1): 171–186. [Google Scholar]
  • Vear F. 2016. Changes in sunflower breeding over the last fifty years. OCL 23(2): D202. [CrossRef] [EDP Sciences] [Google Scholar]
  • Warmington R, Clarkson JP. 2016. Volatiles from biofumigant plants have a direct effect on carpogenic germination of sclerotia and mycelial growth of Sclerotinia sclerotiorum. Plant Soil 401(1–2): 213–229. [Google Scholar]
  • Warton B, Matthiessen JN, Shackleton MA. 2003. Cross-enhancement: enhanced biodegradation of isothiocyanates in soils previously treated with metham sodium. Soil Biol Biochem 35(8): 1123–1127. [Google Scholar]
  • Watanabe T. 1973. Survivability of Macrophomina phaseoli (Maubl.) Ashby in naturally-infested soils and longevity of the sclerotia formed in vitro. Jpn J Phytopathol 39(4): 333–337. [CrossRef] [Google Scholar]
  • Wilhem S. 1955. Longevity of the Verticillium wilt fungus in the laboratory and field. Phytopathology 45: 180–181. [Google Scholar]
  • Wittstock U, Gershenzon J. 2002. Constitutive plant toxins and their role in defense against herbivores and pathogens. Curr Opin Plant Biol 5(4): 300–307. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.