Open Access
Volume 24, Numéro 2, March–April 2017
Numéro d'article A201
Nombre de pages 10
Section Nutrition - Health
Publié en ligne 14 mars 2017
  • Ademe. 2001. Gestion des déchets des commerces de la restauration − Réf. 4064. [Google Scholar]
  • Agreste. [Google Scholar]
  • Agrimer. [Google Scholar]
  • Ailhaud G, Massiera F, Weill P, Legrand P, Alessandri JM, Guesnet P. 2006. Temporal changes in dietary fats: role of n-6 polyunsaturated fatty acids in excessive adipose tissue development and relationship to obesity. Progr Lipid Res 45: 203–236. [Google Scholar]
  • Anses. 2011. Actualisation des apports nutritionnels conseillés pour les acides gras. Rapport d'expertise collective. [Google Scholar]
  • Anses. 2015. Actualisation des apports nutritionnels conseillés pour les acides gras. Rapport d'expertise collective. [Google Scholar]
  • Antruejo A, Azcona JO, Garcia PT, Gallinger C, Rosmini M, Ayerza R. 2011. Omega-3 enriched egg production: the effect of α-linolenic ω-3 fatty acid sources on laying hen performance and yolk lipid content and fatty acid composition. Br Poultry Sci 52: 750–760. [CrossRef] [Google Scholar]
  • Borreani G, Coppa M, Revello-Chion A, Comino L, Giaccone D, Ferlay A. 2013. Effect of different feeding strategies in intensive dairy farming systems on milk fatty acid profiles, and implications on feeding costs in Italy. Jf Dairy Sc 1–16. [Google Scholar]
  • Bousquet M, Calon F, Cicchetti F. 2011. Impact of ω-3 fatty acids in Parkinson's disease. Ageing Res Rev 10: 453–463. [CrossRef] [PubMed] [Google Scholar]
  • Catan A. 2014. La préservation des prairies dans la PAC : les raisons d'une illusion. Courrier de l'Environnement 64: 91–104. [Google Scholar]
  • Ciqual. e-composition-nutritionnelle-des-aliments-f. [Google Scholar]
  • Colussi G, Catena C, Novello M, Bertin N, Sechi LA. 2016. Impact of omega-3 polyunsaturated fatty acids on vascular function and blood pressure: relevance for cardiovascular outcomes. Nutr Metab Cardiovas. [Google Scholar]
  • Combe N, Vaysse C. 2011. Teneurs en acides gras polyinsaturés essentiels du lait maternel en France : évolution des teneurs en acides linoléique et alpha-linolénique. Med & Nutr 47: 5–9. [Google Scholar]
  • Couëdelo L, Billeaud C, Lamireau D, Perez P, Rigourd V, Buffin R. 2014. Evolution of essential fatty acid composition of French breast milk from 1997 to 2014. EFL Montpellier (poster). [Google Scholar]
  • Couvreur S, Hurtaud C, Lopez C, Delaby L, Peyraud JL. 2006. The linear relationship between the proportion of fresh grass in the cow diet, milk fatty acid composition, and butter properties. J Dairy Sci 89: 1956–1969. [CrossRef] [PubMed] [Google Scholar]
  • Delgado-Lista J, Perez-Martinez P, Lopez-Miranda, J, Perez-Jimenez F. 2011. Long chain omega-3 fatty acids and cardiovascular disease: a systematic review. Br J Nutr 107: S201–S213. [CrossRef] [Google Scholar]
  • Devun J, Guinot C. 2012. Alimentation des bovins : rations moyennes et autonomie alimentaire. Techniques 40. [Google Scholar]
  • Doreau M, Fievez V, Troegeler-Meynadier A, Glasser F. 2012. Métabolisme ruminal et digestion des acides gras longs chez le ruminant : le point des connaissances récentes. Prod Anim 25: 361–374. [Google Scholar]
  • Duru M, Magrini M. 2016. Quel potentiel de la prairie pour équilibrer notre alimentation en acides gras ? Fourrages (sous presse). [Google Scholar]
  • FAO. 2008. Graisses et acides gras dans la nutrition humaine. Rapport d'une consultation d'experts. FAO. [Google Scholar]
  • Geels FW. 2004. From sectoral systems of innovation to socio-technical systems: Insights about dynamics and change from sociology and institutional theory. Res policy 33: 897–920. [Google Scholar]
  • Guesnet P, Alasnier C, Alessandri JM, Durand G. 1997. Modifying the n−3 fatty acid content of the maternal diet to determine the requirements of the fetal and suckling rat. Lipids 32 (5): 527–535. [CrossRef] [PubMed] [Google Scholar]
  • Guesnet P, Combe N, Ailhaud G, Alessandri LM. 2009. La teneur en acides gras polyinsaturés du lait maternel : un marqueur biologique fiable du niveau de consommation des populations. OCL 16 (1): 1–3. [CrossRef] [EDP Sciences] [Google Scholar]
  • IDELE. 2011. La production de viande bovine en France. Qui produit quoi, comment et où ? 145: 60 pp. [Google Scholar]
  • Karsten HD, Patterson PH, Stout R, Crews G. 2010. Vitamins A, E and fatty acid composition of the eggs of caged hens and pastured hens. Renew Agricult Food Syst 25: 45. [CrossRef] [Google Scholar]
  • Kartikasari LR, Hughes RJ, Geier MS, Makrides M, Gibson RA. 2012. Dietary alpha-linolenic acid enhances omega-3 long chain polyunsaturated fatty acid levels in chicken tissues. Prostag Leukotr Ess 87: 103–109. [CrossRef] [Google Scholar]
  • Kiecolt-Glaser JK, Belury M, Andridge R, Malarkey WB, Hwang BS, Glaser R. 2012. Omega-3 supplementation lowers inflammation in healthy middle-aged and older adults: a randomized controlled trial. Brain Behav Imm 6: 988–995. [CrossRef] [Google Scholar]
  • Loef M, Walach H. 2013. The omega-6/omega-3 rapport and dementia or cognitive decline: a systematic review on human studies and biological evidence. J Nutr Gerontol Geriatr 32: 1–23. [CrossRef] [PubMed] [Google Scholar]
  • Molendi-Coste O, Legry, V, Leclercq IA. 2011. Why and how meet n-3 PUFA dietary recommendations? Gastroenter Res Pract, Article ID 364040, 11. [Google Scholar]
  • Mourot J. 2015. Évolution de la qualité des produits animaux ces cinquante dernières années. Cah Nutr Diet 50: 1–6. [CrossRef] [Google Scholar]
  • Pighin D, Pazos A, Chamorro V, Paschetta F, Cunzolo S, Godoy F. 2016. Contribution of Beef to Human Health: A Review of the Role of the Animal Production Systems. Hindawi Publishing Corporation; Article ID 8681491, 10 p. [Google Scholar]
  • Pottel L, Lycke M, Boterberg T, Foubert I, Pottel H, Duprez F. 2013. Omega-3 fatty acids: physiology, biological sources and potential applications in supportive cancer care. Phytochem Rev 13: 223–244. [CrossRef] [Google Scholar]
  • Rai AK, Swapna HC, Bhaskar N, Baskaran V. 2012. Potential of seafood industry byproducts as sources of recoverable lipids: fatty acid composition of meat and non-meat component of selected indian marine fishes. J Food Biochem 36: 441–448. [CrossRef] [Google Scholar]
  • Rapport sur les lipides du Programme National Nutrition Santé. 2009. [Google Scholar]
  • Razminowicz RH, Kreuzer M, Scheeder MRL. 2006. Quality of retail beef from two grass-based production systems in comparison with conventional beef. Meat Sci 3: 351–361. [CrossRef] [Google Scholar]
  • Rosenblat JD, Cha DS, Mansur RB, McIntyre RS. 2014. Inflamed moods: A review of the interactions between inflammation and mood disorders. Prog Neuro-Psychoph 53C: 23–34. [CrossRef] [Google Scholar]
  • Rutkowska J, Białek M, Bagnicka E, Jarczak J, Tambor K, Strzałkowska N. 2015. Effects of replacing extracted soybean meal with rapeseed cake in corn grass silage-based diet for dairy cows. J Dairy Res 82: 161–168. [CrossRef] [Google Scholar]
  • Sami AS, Schuster M, Schwarz FJ. 2010. Performance, carcass characteristics and chemical composition of beef affected by lupine seed, rapeseed meal and soybean meal. J Anim Physiol Anim Nutr 94: 465–473. [Google Scholar]
  • Schmidhuber J. 2007. The EU diet–evolution, evaluation and impacts of the CAP. WHO Forum on “Trade and healthy food and diets”, Montreal, Canada. [Google Scholar]
  • Simopoulos AP. 2007. Evolutionary aspects of diet, the omega-6/omega-3 rapport and genetic variation: nutritional implications for chronic diseases. Biomed Pharmacother 60: 502–507. [Google Scholar]
  • Szumacher-Strabel M, Cieślak A, Zmora P, Pers-Kamczyc E, Bielińska S, Stanisz M. 2011. Camelina sativa cake improved unsaturated fatty acids in ewe's milk. J Sci Food Agric 91: 2031–2037. [CrossRef] [PubMed] [Google Scholar]
  • Thomas A, Schneider A, Pilorgé P. 2013. Politiques agricoles et place du colza et du pois dans les systèmes de culture. Revue AE&S 3: 7 [Google Scholar]
  • Tressou J, Pasteau S, Darrigo Dardinet S, Simon N, Le Guillou C. 2016. Données récentes sur les apports en acides gras des Français. OCL 23(3). [Google Scholar]
  • Turner TD, Mapiye C, Aalhus JL, Beaulieu AD, Patience JF, Zijlstra RT. 2014. Flaxseed fed pork: n-3 fatty acid enrichment and contribution to dietary recommendations. Meat Sci 96: 541–547. [CrossRef] [Google Scholar]
  • van Elswyk ME, McNeill SH. 2014. Impact of grass/forage feeding versus grain finishing on beef nutrients and sensory quality: The U.S. experience. Meat Sci 96: 535–540. [CrossRef] [Google Scholar]
  • Vaysse C, Billeau C, Guesnet P, et al. 2011. Teneurs en acides gras polyinsaturés essentiels du lait maternel en France : évolution des teneurs en acides linoléique et alpha-linolénique. Med Nutr 2: 5–9. [CrossRef] [EDP Sciences] [Google Scholar]
  • Yang LG, Song ZX, Yin H, Wang YY, Shu GF, Lu HX. 2016. Low n-6/n-3 PUFA rapport improves lipid metabolism, inflammation, oxidative stress and endothelial function in rats using plant oils as n-3 fatty acid source. Lipids 51: 49–59. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.