Open Access
Volume 22, Numéro 2, March-April 2015
Numéro d'article A202
Nombre de pages 10
Section Nutrition – Health
Publié en ligne 10 mars 2015
  • Avery SV, Lloyd D, Harwood JL. 1995a. Temperature-dependant changes in plasma membrane lipid order and the phagocytic activity of the amoeba Acanthamoeba castellanii are closely connected. Biochem. J. 312: 811–816. [PubMed] [Google Scholar]
  • Avery SV, Harwood JL, Lloyd D. 1995b. Quantification and characterization of phagocytosis in the soil amoeba Accanthamoeba castellenii by flow cytometry. Appl. Environ. Microbial. 61: 1124–1132. [Google Scholar]
  • Barber GA. 1963. The formation of uridine diphosphate L-rhamnose by enzymes of the tobacco leaf. Arch. Biochem. Biophys. 103: 276–282. [CrossRef] [PubMed] [Google Scholar]
  • Bargerger-Gateau P, Letenneur L, Deschamps V, et al. 2002. Fish, meat and the risk of dementia: Cohort study. Br. Med. J. 325: 932–933. [CrossRef] [PubMed] [Google Scholar]
  • Burns DD, Galliard T, Harwood JL. 1977. Catabolism of sulphoquinovosyldiacylglycerol by an enzyme preparation from Phaseolus multiflorus. Phytochemistry 16: 651–654. [CrossRef] [Google Scholar]
  • Calder PC, Zurier RB. 2001. Polyunsaturated fatty acids and rheumatoid arthritis. Curr. Opin. Clin. Nutr. Metab. Care 4: 115–121. [CrossRef] [PubMed] [Google Scholar]
  • Cheng B, Wu G, Vrinten P, et al. 2010. Towards the production of high levels of eicosapentaenoic acid in transgenic plants: The effects of different host species, genes and promoters. Transgenic Res. 19: 221–229. [CrossRef] [PubMed] [Google Scholar]
  • Clements JA. 1997. Lung surfactant: A personal perspective. Ann. Rev. Physiol. 59: 1–21. [CrossRef] [Google Scholar]
  • Curtis CL, Rees SG, Cramp J, et al. 2002. Effects of n-3 fatty acids on cartilage metabolism. Proc. Nutri. Soc. 61: 381–389. [CrossRef] [Google Scholar]
  • Dayan FE, Kagan IA, Rimando AM. 2003. Elucidation of the biosynthetic pathway of allelochemical sorgoleone using retrobiosynthetic NMR analysis. J. Biol. Chem. 278: 28607–28611. [CrossRef] [PubMed] [Google Scholar]
  • Denger K, Weiss M, Felux A-K, et al. 2014. Sulphoglycolysis in Escherichia coli K-12 closes a gap in the biogeochemical sulphur cycle. Nature 507: 114–117. [CrossRef] [PubMed] [Google Scholar]
  • Elder GA, Sosa G, De Gasperi R. 2010. Transgenic mouse models of Alzheimer’s disease. Mt. Sinai J. Med. 77: 69–81. [CrossRef] [PubMed] [Google Scholar]
  • Falinska AM, Bascoul-Colombo C, Guschina IA, Good M, Harwood JL. 2012. The role of n-3 dietary polyunsaturated fatty acids in brain function and amelioration of Alzheimer’s disease: Opportunities for biotechnology in the development of nutraceuticals. Biocat. Agric. Biotechnol. 1: 159–166. [Google Scholar]
  • Fell DA. 1997. Understanding the control of metabolism. London: Portland Press. [Google Scholar]
  • Fenchel T. 1984. Ecology of Protozoa. Madison, Wis: Science Technology Publishers. [Google Scholar]
  • Frenchel T. 1982. Ecology of heterotrophic microflagellates. IV. Quantitative occurance and importance as bacterial consumers. Mar. Ecol. Prog. Ser. 9: 35–42. [CrossRef] [Google Scholar]
  • Gunstone FD, Harwood JL, Dijkstra AJ (eds.). 2007. The lipid handbook, 3rd edn. Boca Raton, FL: Taylor and Francis. [Google Scholar]
  • Gurr MI, Robinson MP, James AT. 1969. The mechanism of formation of polyunsaturated fatty acids by photosynthetic tissues. Eur. J. Biochem. 9: 70–78. [CrossRef] [PubMed] [Google Scholar]
  • Guschina IA, Everard JD, Kinney AJ, Quant PA, Harwood JL. 2014. Studies on the regulation of lipid biosynthesis in plants: Application of control analysis in soybean. Biochim. Biophys. Acta 1836: 1488–1500. [CrossRef] [Google Scholar]
  • Harwood JL, in: Stumpf PK (ed.), Biochemistry of plants. New York: Academic Press, 1980, Vol. 4, pp. 301–320. [Google Scholar]
  • Harwood JL, Stumpf PK. 1971. Control of fatty acid synthesis in germinating seeds. Arch. Biochem. Biophys. 142: 281–291. [CrossRef] [PubMed] [Google Scholar]
  • Harwood JL, Caterson B. 2006. Dietary omega-3 polyunsaturated fatty acids and inflammation. Lipid Technol. 18: 7–10. [Google Scholar]
  • Harwood JL, Stumpf PK. 1972. Palmitic and stearic acid synthesis by an avocado supernatant system. Arch. Biochem. Biophys. 148: 282–290. [CrossRef] [PubMed] [Google Scholar]
  • Harwood JL, Desai R, Hext P, Tetley T, Richards RJ. 1975. Characterisation of pulmonary surfactant from ox, rabbit, rat and sheep. Biochem. J. 151: 707–714. [PubMed] [Google Scholar]
  • Harwood JL, Ramli US, Tang M, et al. 2013. Regulation and enhancement of lipid accumulation in oil crops: The use of metabolic control analysis for informed genetic manipulation. Eur. J. Lipid Sci. Technol. 364: 393–401. [Google Scholar]
  • Hurst S, Rees SG, Randerson PF, Caterson B, Harwood JL. 2009. Contrasting effects of n-3 and n-6 fatty acids on cyclooxygenase-2 in model systems for arthritis. Lipids 44: 889–896. [CrossRef] [PubMed] [Google Scholar]
  • Jackowski S, Rock CO. 1987. Acetoacetyl-acyl carrier protein synthase, a potential regulator of fatty acid synthesis in bacteria. J. Biol. Chem. 262: 7927–7931. [PubMed] [Google Scholar]
  • Jones AL, Pruitt NL, Lloyd D, Harwood JL. 1991. Temperature induced changes in the synthesis of unsaturated fatty acids by Acanthamoeba castellanii. J. Protozol. 38: 532–536. [CrossRef] [Google Scholar]
  • Jones AL, Lloyd D, Harwood JL, 1993. Rapid induction of microsomal Δ12 (w6)-desaturase activity in chilled Acanthamoeba castellanii. Biochem. J. 1993, 296, 183–188. [PubMed] [Google Scholar]
  • Jones AL, Gane AM, Herbert D, et al. 2003. β-Ketoacyl-acyl carrier protein synthase III from pea: Properties, inhibition by a novel thiolactomycin analogue and isolation of cDNA clone encoding the enzyme. Planta 216: 752–761. [PubMed] [Google Scholar]
  • Kalmijn S, Launer L, Ott A, et al. 1997. Dietary fat intake and the risk of incident dementia in the Rotterdam study. Ann. Neurol. 42: 776–782. [CrossRef] [PubMed] [Google Scholar]
  • Kikukawa H, Sakuradani E, Kishino S, et al. 2013. Characterization of a trifunctional fatty acid desaturase from oleaginous filamentous fungus Martierella alpine 1S-4 using a yeast expression system. J. Biosci. Bioeng. 116: 672–676. [CrossRef] [PubMed] [Google Scholar]
  • Lands WEM. 2014. Historical perspectives on the impact of n-3 and n-6 nutrients on health. Prog. Lipid Res. 55: 17–29. [Google Scholar]
  • Lee RF, Benson AA. 1964. The metabolism of glyceryl [35S]sulphoquinovoside by the coral tree, Erythrina crista-galli and alfalfa Medicago sativa. Biochim. Biophys. Acta 261: 35–37. [Google Scholar]
  • Lehmann J, Benson AA. 1964. The plant sulfolipids. Sulfosugar synthesis from methyl hexoseenides. J. Am. Chem. Soc. 86: 4469–4472. [CrossRef] [Google Scholar]
  • Martelli H, Benson AA. 1964. Sulphocarbohydrate metabolism. 1. Bacterial production and utilization of sulphoacetate. Biochim. Biophys. Acta 93: 169–171. [CrossRef] [PubMed] [Google Scholar]
  • McCann JC, Ames BN. 2005. Is docosahexaenoic acid, an n-3 long-chain polyunsaturated fatty acid, required for development of normal brain function? An overview of evidence from cognitive and behavioural tests in humans and animals. Am. J. Clin. Nutr. 82: 281–295. [PubMed] [Google Scholar]
  • Morris MC, Evans DA, Bienias JL, et al. 2003. Consumption of fish and n-3 fatty acids and the risk of incident Alzheimer’s disease. Arch. Neurol. 60: 940–946. [CrossRef] [PubMed] [Google Scholar]
  • Nichols BW, James AT, Breuer J. 1967. Interrelationships between fatty acid biosynthesis and acyl-lipid synthesis in Chlorella vulgaris. Biochem. J. 104: 486–496. [PubMed] [Google Scholar]
  • Patric JR, Shrestha P, Zhou XR, et al. 2012. Metabolic engineering plant seeds with fish oil-like levels of DHA. PLos One 7: e49165. [CrossRef] [PubMed] [Google Scholar]
  • Perry HJ, Bligny R, Gout E, Harwood JL. 1999. Changes in Kennedy pathway intermediates associated with increased triacylglycerol synthesis in oil-seed rape. Phytochemistry 52: 799–804. [CrossRef] [Google Scholar]
  • Perry HJ, Harwood JL. 1993. Radiolabelling studies of acyl lipids in developing seeds of Brassica napus: Use of [1-14C]acetate precursor. Phytochemistry 33: 329–353. [CrossRef] [Google Scholar]
  • Pugh CE, Roy AB, Hawkes T, Harwood JL. 1995. A new pathway for the synthesis of the plant sulpholipid, sulphoquinovosyldiacylglycerol. Biochem. J. 309: 513–519. [PubMed] [Google Scholar]
  • Ramli US, Baker DS, Quant PA, Harwood JL. 2002. Control analysis of lipid biosynthesis in tissue cultures of oil crops shows that flux control is shared between fatty acid synthesis and lipid assembly. Biochem. J. 364: 393–401. [CrossRef] [PubMed] [Google Scholar]
  • Ramli US, Salas JJ, Quant PA, Harwood JL. 2005. Metabolic control analysis reveals an important role for diacylglycerol acyltransferase in olive but not in oil palm lipid accumulation. FEBS J. 272: 5764–5770. [CrossRef] [PubMed] [Google Scholar]
  • Ramli US, Salas JJ, Quant PA, Harwood JL. 2009. Use of metabolic control analysis to give quantitative information on the control of lipid biosynthesis in the important oil crop, Elaeis guineensis (oil palm). New Phytol. 184: 330–339. [CrossRef] [PubMed] [Google Scholar]
  • Robertson B, Van Golde LMG, Batenburg JJ, eds. 1984. Pulmonary Surfactant, Amsterdam: Elsevier. [Google Scholar]
  • Roy AB, Hewlins MJE, Ellis AJ, Harwood JL, White, GF. 2003. Glycolyic breakdown of sulphoquinovose in bacteria: A missing link in the sulphur cycle. Appl. Environ. Microbiol. 69: 6434–6441. [CrossRef] [PubMed] [Google Scholar]
  • Ruiz-Lopez N, Haslam RP, Usher SL, et al. 2013. Reconstitution of EPA and DHA biosynthesis in Arabidopsis. Iterative metabolic engineering for the synthesis of n-3 LC-PUFAs in transgenic plants. Metab. Eng. 17: 30–41. [CrossRef] [PubMed] [Google Scholar]
  • Sayanova O, Haslam R, Guschina I, et al. 2006. A bi-functional Δ12, Δ15-desaturase from Accanthamoeba castellanii directs the synthesis of highly unusual n-1 series unsaturated fatty acids. J. Biol. Chem. 281: 36533–36541. [CrossRef] [PubMed] [Google Scholar]
  • Shimijima M. 2011. Biosynthesis and functions of the plant sulpholipid. Prog. Lipid Res. 50: 234–239. [CrossRef] [PubMed] [Google Scholar]
  • Slack CR, Roughan PG, Browse J. 1979. Evidence for an oleoyl-phosphatidylcholine desaturase in microsomal preparations from cotyledons of sunflower seeds. Biochem. J. 179: 649–652. [PubMed] [Google Scholar]
  • Tang M, Guschina IA, O’Hara P, et al. 2012. Metabolic control analysis of developing oilseed rape embryos shows that lipid assembly exerts significant control over oil accumulation. New Phytologist 196: 415–426. [CrossRef] [Google Scholar]
  • Taylor DC, Zhang Y, Kumar A, et al. 2009. Molecular modification of triacylglycerol accumulation by over-expression of DGAT1 to produce canola with increased seed oil content under field conditions. Botany 87: 533–543. [CrossRef] [Google Scholar]
  • Vanherke T, EI Tahchy A, Shrestha P, et al. 2013. Synergistic effect of WRI 1, DGAT 1 coexpression on triacylglycerol biosynthesis in plants. FEBS Lett. 587: 364–369. [CrossRef] [PubMed] [Google Scholar]
  • Wallis JG, Browse J. 2002. Mutants of Arabidopsis reveal many roles for membrane lipids. Prog. Lipid Res. 41: 254–278. [CrossRef] [PubMed] [Google Scholar]
  • Walsh MC, Klopfenstein WE, Harwood JL. 1990. The short chain condensing enzyme has a widespread occurance in the fatty acid synthases of higher plants. Phytochemistry 29: 3797–3799. [CrossRef] [Google Scholar]
  • Watson RR, ed. 2009. Fatty Acids in Health Promotion and Disease Causation, Urbana, IL: AOCS Press. [Google Scholar]
  • Weselake RJ, Shah S, Tang M, et al. 2008. Metabolic control analysis is helpful for informed genetic manipulation of oilseed rape (Brassica napus) to increase seed oil content. J. Exptl. Botany 59: 3543–3549. [CrossRef] [Google Scholar]
  • Wharfe J, Harwood JL. 1978. Fatty acid biosynthesis in the leaves of barley, wheat and pea. Biochem. J. 174: 163–169. [PubMed] [Google Scholar]
  • Wrobel S. 2004. Bubbles, babies and biology: The story of surfactant. FASEB J. 18: 1624e. [CrossRef] [Google Scholar]
  • Wu G, Traksa M, Datla N, et al. 2005. Stepwise engineering to produce high yields of very long-chain polyunsaturated fatty acids in plants. Nat. Biotechnol. 23: 1013–1017. [CrossRef] [PubMed] [Google Scholar]
  • Zainal Z, Longman AJ, Hurst S, et al. 2009. Relative efficacies of omega-3 polyunsaturated fatty acids in reducing expression of key proteins in a model system for studying osteoarthritis. Osteoarthritis Cartilage. 17: 882–891. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.