Open Access
Numéro |
OCL
Volume 21, Numéro 3, May-June 2014
|
|
---|---|---|
Numéro d'article | D310 | |
Nombre de pages | 6 | |
Section | Dossier: Vitamin D, vitamin or hormone? / La vitamine D, vitamine ou hormone ? | |
DOI | https://doi.org/10.1051/ocl/2014011 | |
Publié en ligne | 29 avril 2014 |
- Birge SJ, Haddad JG. 1975. 25-Hydroxycholecalciferol stimulation of muscle metabolism. J. Clin. Invest. 56: 1100–1107. [CrossRef] [PubMed] [Google Scholar]
- Bischoff HA, Borchers M, Gudat F, et al. 2001. In situ detection of 1,25-dihydroxyvitamin D3 receptor in human skeletal muscle tissue. Histochem. J. 33: 19–24. [CrossRef] [PubMed] [Google Scholar]
- Bischoff HA, Stahelin HB, Urscheler N, et al. 1999. Muscle strength in the elderly: its relation to vitamin D metabolites. Arch. Phys. Med. Rehabil. 80: 54–58. [CrossRef] [PubMed] [Google Scholar]
- Bischoff-Ferrari HA, Borchers M, Gudat F, Durmuller U, Stahelin HB, Dick W. 2004. Vitamin D receptor expression in human muscle tissue decreases with age. J. Bone Miner. Res. 19: 265–269. [CrossRef] [PubMed] [Google Scholar]
- Bischoff-Ferrari HA, Dietrich T, Orav EJ, et al. 2004. Higher 25-hydroxyvitamin D concentrations are associated with better lower-extremity function in both active and inactive persons aged >60 y. Am. J. Clin. Nutr. 80: 752–758. [PubMed] [Google Scholar]
- Bischoff-Ferrari, HA, et al. 2009. Prevention of nonvertebral fractures with oral vitamin D and dose dependency: a meta-analysis of randomized controlled trials. Arch. Intern. Med. 169: 551–561. [Google Scholar]
- Boland R, de Boland AR, Marinissen MJ, Santillan G, Vazquez G, Zanello S. 1995. Avian muscle cells as targets for the secosteroid hormone 1,25-dihydroxy-vitamin D3. Mol. Cell. Endocrinol. 114: 1–8. [CrossRef] [PubMed] [Google Scholar]
- Boland R, Norman A, Ritz E, Hasselbach W. 1985. Presence of a 1,25-dihydroxyvitamin D3 receptor in chick skeletal muscle myoblasts. Biochem. Biophys. Res. Commun. 128: 305–311. [CrossRef] [PubMed] [Google Scholar]
- Boland R. 1986. Role of vitamin D in skeletal muscle function. Endocrine Rev. 7: 434–447. [CrossRef] [Google Scholar]
- Boland RL. 2011. VDR activation of intracellular signaling pathways in skeletal muscle. Mol. Cell. Endocrinol. 347: 11–16. [CrossRef] [PubMed] [Google Scholar]
- Buitrago C, Pardo VG, Boland R. 2013. Role of VDR in 1α, 25-dihydroxyvitamin D3-dependent non-genomic activation of MAPKs, Src and Akt in skeletal muscle cells. J. Steroid. Biochem. Mol. Biol. 136: 125–130. [CrossRef] [PubMed] [Google Scholar]
- Buitrago CG, Arango NS, Boland RL. 2012. 1α, 25(OH)2D3-dependent modulation of Akt in proliferating and differentiating C2C12 skeletal muscle cells. J. Cell. Biochem. 113: 1170–1181. [CrossRef] [PubMed] [Google Scholar]
- Bunout D, Barrera G, Leiva L, Gattas V, de la Maza MP, Avendaño M, Hirsch S. 2006. Effects of vitamin D supplementation and exercise training on physical performance in Chilean vitamin D deficient elderly subjects. Exp. Gerontol. 41: 746–752. [CrossRef] [PubMed] [Google Scholar]
- Ceglia L. 2009. Vitamin D and its role in skeletal muscle. Curr. Opin. Clin. Nutr. Metab. Care 12: 628–633. [CrossRef] [PubMed] [Google Scholar]
- Costa EM, Blau HM, Feldman D. 1986. 1,25-Dihydroxyvitamin D3 receptors and hormonal responses in cloned human skeletal muscle cells. Endocrinology 119: 2214–2220. [CrossRef] [PubMed] [Google Scholar]
- De Boland AR, Boland RL. 1994. Non-genomic signal transduction pathway of vitamin D in muscle. Cell Signal 6: 717–724. [CrossRef] [PubMed] [Google Scholar]
- Dusso AS, Brown AJ. 1998. Mechanism of vitamin D action and its regulation. Am. J. Kidney Dis. 32: S13–S24. [CrossRef] [PubMed] [Google Scholar]
- Ebashi S, Endo M. 1968. Calcium ion and muscle contraction. Prog. Biophys. Mol. Biol. 18: 123–183. [CrossRef] [PubMed] [Google Scholar]
- Floyd M, Ayyar DR, Barwick DD, Hudgson P, Weightman D. 1974. Myopathy in chronic renal failure. Q J Med. 43: 509–524. [PubMed] [Google Scholar]
- Girgis CM, Clifton-Bligh RJ, Turner N, Lau SL, Gunton JE. 2014. Effects of vitamin D in skeletal muscle: falls, strength, athletic performance and insulin sensitivity. Clin. Endocrinol. 80: 169–181. [CrossRef] [Google Scholar]
- Glerup H, Mikkelsen K, Poulsen L, et al. 2000. Hypovitaminosis D myopathy without biochemical signs of osteomalacic bone involvement. Calcif. Tissue Int. 66: 419–424. [CrossRef] [PubMed] [Google Scholar]
- Gloth FM III, Smith CE, Hollis BW, Tobin JD. 1995. Functional improvement with vitamin D replenishment in a cohort of frail, vitamin D deficient older people. J. Am. Geriatr. Soc. 43: 1269–1271. [PubMed] [Google Scholar]
- Haran PH, Rivas DA, Fielding RA. 2012. Role and potential mechanisms of anabolic resistance in sarcopenia. J. Cachexia Sarcopenia Muscle 3: 157–162. [CrossRef] [PubMed] [Google Scholar]
- Lazaro RP, Kirshner HS. 1980. Proximal muscle weakness in uremia. Case reports and review of the literature. Arch. Neurol. 37: 555–558. [CrossRef] [PubMed] [Google Scholar]
- Lips P. 2001. Vitamin D deficiency and secondary hyperparathyroidism in the elderly: consequences for bone loss and fractures and therapeutic implications. Endocr. Rev. 22: 477–501. [CrossRef] [PubMed] [Google Scholar]
- Massheimer V, Fernandez LM, Boland R, de Boland AR. 1992. Regulation of Ca2+ uptake in skeletal muscle by 1,25-dihydroxyvitamin D3: role of phosphorylation and calmodulin. Mol. Cell. Endocrinol. 84: 15–22. [CrossRef] [PubMed] [Google Scholar]
- Mets T. 1994. Calcium, vitamin D, and hip fractures. Incidence of falls may have decreased. BMJ 309: 193. [CrossRef] [PubMed] [Google Scholar]
- Moreira-Pfrimer LD, Pedrosa MA, Teixeira L, Lazaretti-Castro M. 2009. Treatment of vitamin D deficiency increases lower limb muscle strength in institutionalized older people independently of regular physical activity: a randomized double-blind controlled trial. Ann. Nutr. Metab. 54: 291–300. [CrossRef] [PubMed] [Google Scholar]
- Mowé M, Haug E, Bøhmer T. 1999. Low serum calcidiol concentration in older adults with reduced muscular function. J. Am. Geriatr. Soc. 47: 220–226. [PubMed] [Google Scholar]
- Nemere I, Dormanen MC, Hammond MW, Okamura WH, Norman AW. 1994. Identification of a specific binding for 1,25-dihydroxyvitamin D3 in basal-lateral membranes of chick intestinal epithelium and relationship to transcaltachia. J. Biol. Chem. 269: 23750–23756. [PubMed] [Google Scholar]
- Nemere I, Schwartz Z, Pedrozo H, Sylvia VL, Dean DD, Boyan BD. 1998. Identification of a membrane receptor for 1,25-dihydroxyvitamin D3 which mediates rapid activation of protein kinase C. J. Bone Miner. Res. 13: 1353–1359. [Google Scholar]
- Pojednic RM, Ceglia L. 2014. The emerging biomolecular role of vitamin D in skeletal muscle. Exerc. Sport Sci. Rev. 42: 76–81. [CrossRef] [PubMed] [Google Scholar]
- Prineas JW, Mason AS, Henson RA. 1965. Myopathy in Metabolic Bone Disease. Br. Med. J. 1: 1034–1036. [CrossRef] [PubMed] [Google Scholar]
- Salles J, Chanet A, Giraudet C, Patrac V, Pierre P, Jourdan M, Luiking YC, Verlaan S, Migné C, Boirie Y, Walrand S. 2013. 1,25(OH)2-vitamin D3 enhances the stimulating effect of leucine and insulin on protein synthesis rate through Akt/PKB and mTOR mediated pathways in murine C2C12 skeletal myotubes. Mol. Nutr. Food Res. 57: 2137–2146. [CrossRef] [PubMed] [Google Scholar]
- Sato Y, Iwamoto J, Kanoko T, Satoh K. 2005. Low-dose vitamin D prevents muscular atrophy and reduces falls and hip fractures in women after stroke: a randomized controlled trial. Cerebrovasc. Dis. 20: 187–192. [CrossRef] [PubMed] [Google Scholar]
- Smith R, Stern G. 1969. Muscular weakness in osteomalacia and hyperparathyroidism. J. Neurol. Sci. 8: 511–520. [CrossRef] [PubMed] [Google Scholar]
- Snijder MB, van Schoor NM, Pluijm SM, van Dam RM, Visser M, Lips P. 2006. Vitamin D status in relation to one-year risk of recurrent falling in older men and women. J. Clin. Endocrinol. Metab. 91: 2980–2985. [CrossRef] [PubMed] [Google Scholar]
- Sorensen OH, Lund B, Saltin B, et al. 1979. Myopathy in bone loss of ageing: improvement by treatment with 1α-hydroxycholecalciferol and calcium. Clin. Sci. (Colch) 56: 157–161. [Google Scholar]
- Stein MS, Wark JD, Scherer SC, et al. 1999. Falls relate to vitamin D and parathyroid hormone in an Australian nursing home and hostel. J. Am. Geriatr. Soc. 47: 1195–1201. [PubMed] [Google Scholar]
- Vazquez G, de Boland AR, Boland R. 1997. Stimulation of Ca2+ releaseactivated Ca2+ channels as a potential mechanism involved in nongenomic 1,25(OH)2-vitamin D3-induced Ca2+ entry in skeletal muscle cells. Biochem. Biophys. Res. Commun. 239: 562–565. [CrossRef] [PubMed] [Google Scholar]
- Verhaar HJJ, Samson MM, Jansen PAF, de Vreede PL, Manten JW, Duursma SA. 2000. Muscle strength, functional mobility and vitamin D in older women. Aging Clin. Exp. Res. 12: 455–460. [CrossRef] [Google Scholar]
- Wacker M, Holick MF. 2013. Vitamin D – effects on skeletal and extraskeletal health and the need for supplementation. Nutrients 10: 111–148. [CrossRef] [Google Scholar]
- Walrand S, Boirie Y. 2005. Optimizing protein intake in aging. Curr. Opin. Clin. Nutr. Metab. Care 8: 89–94. [CrossRef] [PubMed] [Google Scholar]
- Walrand S, Guillet C, Salles J, Cano N, Boirie Y. 2011. Physiopathological mechanism of sarcopenia. Clin. Geriatr. Med. 27: 365–385. [CrossRef] [PubMed] [Google Scholar]
- Wang H, Listrat A, Meunier B, Gueugneau M, Coudy-Gandilhon C, Combaret L, Taillandier D, Polge C, Attaix D, Lethias C, Lee K, Goh KL, Béchet D. 2013. Apoptosis in capillary endothelial cells in ageing skeletal muscle. Aging. Cell. [Google Scholar]
- Young A, Edwards RHT, Jones DA, Brenton DP. Quadriceps muscle strength and fibre size during the treatment of osteomalacia. In: Stokes IAF, ed. Mechanical factors and the skeleton. London: Libbey, 1981: 137–45. [Google Scholar]
- Zhu K, Austin N, Devine A, Bruce D, Prince RL. 2010. A randomized controlled trial of the effects of vitamin D on muscle strength and mobility in older women with vitamin D insufficiency. J. Am. Geriatr. Soc. 58: 2063–2068. [CrossRef] [PubMed] [Google Scholar]
- Ziambaras K, Dagogo-Jack S. 1997. Reversible muscle weakness in patients with vitamin D deficiency. West J. Med. 167: 435–439. [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.