Open Access
Issue |
OCL
Volume 21, Number 3, May-June 2014
|
|
---|---|---|
Article Number | D310 | |
Number of page(s) | 6 | |
Section | Dossier: Vitamin D, vitamin or hormone? / La vitamine D, vitamine ou hormone ? | |
DOI | https://doi.org/10.1051/ocl/2014011 | |
Published online | 29 April 2014 |
- Birge SJ, Haddad JG. 1975. 25-Hydroxycholecalciferol stimulation of muscle metabolism. J. Clin. Invest. 56: 1100–1107. [CrossRef] [PubMed] [Google Scholar]
- Bischoff HA, Borchers M, Gudat F, et al. 2001. In situ detection of 1,25-dihydroxyvitamin D3 receptor in human skeletal muscle tissue. Histochem. J. 33: 19–24. [CrossRef] [PubMed] [Google Scholar]
- Bischoff HA, Stahelin HB, Urscheler N, et al. 1999. Muscle strength in the elderly: its relation to vitamin D metabolites. Arch. Phys. Med. Rehabil. 80: 54–58. [CrossRef] [PubMed] [Google Scholar]
- Bischoff-Ferrari HA, Borchers M, Gudat F, Durmuller U, Stahelin HB, Dick W. 2004. Vitamin D receptor expression in human muscle tissue decreases with age. J. Bone Miner. Res. 19: 265–269. [CrossRef] [PubMed] [Google Scholar]
- Bischoff-Ferrari HA, Dietrich T, Orav EJ, et al. 2004. Higher 25-hydroxyvitamin D concentrations are associated with better lower-extremity function in both active and inactive persons aged >60 y. Am. J. Clin. Nutr. 80: 752–758. [PubMed] [Google Scholar]
- Bischoff-Ferrari, HA, et al. 2009. Prevention of nonvertebral fractures with oral vitamin D and dose dependency: a meta-analysis of randomized controlled trials. Arch. Intern. Med. 169: 551–561. [Google Scholar]
- Boland R, de Boland AR, Marinissen MJ, Santillan G, Vazquez G, Zanello S. 1995. Avian muscle cells as targets for the secosteroid hormone 1,25-dihydroxy-vitamin D3. Mol. Cell. Endocrinol. 114: 1–8. [CrossRef] [PubMed] [Google Scholar]
- Boland R, Norman A, Ritz E, Hasselbach W. 1985. Presence of a 1,25-dihydroxyvitamin D3 receptor in chick skeletal muscle myoblasts. Biochem. Biophys. Res. Commun. 128: 305–311. [CrossRef] [PubMed] [Google Scholar]
- Boland R. 1986. Role of vitamin D in skeletal muscle function. Endocrine Rev. 7: 434–447. [CrossRef] [Google Scholar]
- Boland RL. 2011. VDR activation of intracellular signaling pathways in skeletal muscle. Mol. Cell. Endocrinol. 347: 11–16. [CrossRef] [PubMed] [Google Scholar]
- Buitrago C, Pardo VG, Boland R. 2013. Role of VDR in 1α, 25-dihydroxyvitamin D3-dependent non-genomic activation of MAPKs, Src and Akt in skeletal muscle cells. J. Steroid. Biochem. Mol. Biol. 136: 125–130. [CrossRef] [PubMed] [Google Scholar]
- Buitrago CG, Arango NS, Boland RL. 2012. 1α, 25(OH)2D3-dependent modulation of Akt in proliferating and differentiating C2C12 skeletal muscle cells. J. Cell. Biochem. 113: 1170–1181. [CrossRef] [PubMed] [Google Scholar]
- Bunout D, Barrera G, Leiva L, Gattas V, de la Maza MP, Avendaño M, Hirsch S. 2006. Effects of vitamin D supplementation and exercise training on physical performance in Chilean vitamin D deficient elderly subjects. Exp. Gerontol. 41: 746–752. [CrossRef] [PubMed] [Google Scholar]
- Ceglia L. 2009. Vitamin D and its role in skeletal muscle. Curr. Opin. Clin. Nutr. Metab. Care 12: 628–633. [CrossRef] [PubMed] [Google Scholar]
- Costa EM, Blau HM, Feldman D. 1986. 1,25-Dihydroxyvitamin D3 receptors and hormonal responses in cloned human skeletal muscle cells. Endocrinology 119: 2214–2220. [CrossRef] [PubMed] [Google Scholar]
- De Boland AR, Boland RL. 1994. Non-genomic signal transduction pathway of vitamin D in muscle. Cell Signal 6: 717–724. [CrossRef] [PubMed] [Google Scholar]
- Dusso AS, Brown AJ. 1998. Mechanism of vitamin D action and its regulation. Am. J. Kidney Dis. 32: S13–S24. [CrossRef] [PubMed] [Google Scholar]
- Ebashi S, Endo M. 1968. Calcium ion and muscle contraction. Prog. Biophys. Mol. Biol. 18: 123–183. [CrossRef] [PubMed] [Google Scholar]
- Floyd M, Ayyar DR, Barwick DD, Hudgson P, Weightman D. 1974. Myopathy in chronic renal failure. Q J Med. 43: 509–524. [PubMed] [Google Scholar]
- Girgis CM, Clifton-Bligh RJ, Turner N, Lau SL, Gunton JE. 2014. Effects of vitamin D in skeletal muscle: falls, strength, athletic performance and insulin sensitivity. Clin. Endocrinol. 80: 169–181. [CrossRef] [Google Scholar]
- Glerup H, Mikkelsen K, Poulsen L, et al. 2000. Hypovitaminosis D myopathy without biochemical signs of osteomalacic bone involvement. Calcif. Tissue Int. 66: 419–424. [CrossRef] [PubMed] [Google Scholar]
- Gloth FM III, Smith CE, Hollis BW, Tobin JD. 1995. Functional improvement with vitamin D replenishment in a cohort of frail, vitamin D deficient older people. J. Am. Geriatr. Soc. 43: 1269–1271. [PubMed] [Google Scholar]
- Haran PH, Rivas DA, Fielding RA. 2012. Role and potential mechanisms of anabolic resistance in sarcopenia. J. Cachexia Sarcopenia Muscle 3: 157–162. [CrossRef] [PubMed] [Google Scholar]
- Lazaro RP, Kirshner HS. 1980. Proximal muscle weakness in uremia. Case reports and review of the literature. Arch. Neurol. 37: 555–558. [CrossRef] [PubMed] [Google Scholar]
- Lips P. 2001. Vitamin D deficiency and secondary hyperparathyroidism in the elderly: consequences for bone loss and fractures and therapeutic implications. Endocr. Rev. 22: 477–501. [CrossRef] [PubMed] [Google Scholar]
- Massheimer V, Fernandez LM, Boland R, de Boland AR. 1992. Regulation of Ca2+ uptake in skeletal muscle by 1,25-dihydroxyvitamin D3: role of phosphorylation and calmodulin. Mol. Cell. Endocrinol. 84: 15–22. [CrossRef] [PubMed] [Google Scholar]
- Mets T. 1994. Calcium, vitamin D, and hip fractures. Incidence of falls may have decreased. BMJ 309: 193. [CrossRef] [PubMed] [Google Scholar]
- Moreira-Pfrimer LD, Pedrosa MA, Teixeira L, Lazaretti-Castro M. 2009. Treatment of vitamin D deficiency increases lower limb muscle strength in institutionalized older people independently of regular physical activity: a randomized double-blind controlled trial. Ann. Nutr. Metab. 54: 291–300. [CrossRef] [PubMed] [Google Scholar]
- Mowé M, Haug E, Bøhmer T. 1999. Low serum calcidiol concentration in older adults with reduced muscular function. J. Am. Geriatr. Soc. 47: 220–226. [PubMed] [Google Scholar]
- Nemere I, Dormanen MC, Hammond MW, Okamura WH, Norman AW. 1994. Identification of a specific binding for 1,25-dihydroxyvitamin D3 in basal-lateral membranes of chick intestinal epithelium and relationship to transcaltachia. J. Biol. Chem. 269: 23750–23756. [PubMed] [Google Scholar]
- Nemere I, Schwartz Z, Pedrozo H, Sylvia VL, Dean DD, Boyan BD. 1998. Identification of a membrane receptor for 1,25-dihydroxyvitamin D3 which mediates rapid activation of protein kinase C. J. Bone Miner. Res. 13: 1353–1359. [Google Scholar]
- Pojednic RM, Ceglia L. 2014. The emerging biomolecular role of vitamin D in skeletal muscle. Exerc. Sport Sci. Rev. 42: 76–81. [CrossRef] [PubMed] [Google Scholar]
- Prineas JW, Mason AS, Henson RA. 1965. Myopathy in Metabolic Bone Disease. Br. Med. J. 1: 1034–1036. [CrossRef] [PubMed] [Google Scholar]
- Salles J, Chanet A, Giraudet C, Patrac V, Pierre P, Jourdan M, Luiking YC, Verlaan S, Migné C, Boirie Y, Walrand S. 2013. 1,25(OH)2-vitamin D3 enhances the stimulating effect of leucine and insulin on protein synthesis rate through Akt/PKB and mTOR mediated pathways in murine C2C12 skeletal myotubes. Mol. Nutr. Food Res. 57: 2137–2146. [CrossRef] [PubMed] [Google Scholar]
- Sato Y, Iwamoto J, Kanoko T, Satoh K. 2005. Low-dose vitamin D prevents muscular atrophy and reduces falls and hip fractures in women after stroke: a randomized controlled trial. Cerebrovasc. Dis. 20: 187–192. [CrossRef] [PubMed] [Google Scholar]
- Smith R, Stern G. 1969. Muscular weakness in osteomalacia and hyperparathyroidism. J. Neurol. Sci. 8: 511–520. [CrossRef] [PubMed] [Google Scholar]
- Snijder MB, van Schoor NM, Pluijm SM, van Dam RM, Visser M, Lips P. 2006. Vitamin D status in relation to one-year risk of recurrent falling in older men and women. J. Clin. Endocrinol. Metab. 91: 2980–2985. [CrossRef] [PubMed] [Google Scholar]
- Sorensen OH, Lund B, Saltin B, et al. 1979. Myopathy in bone loss of ageing: improvement by treatment with 1α-hydroxycholecalciferol and calcium. Clin. Sci. (Colch) 56: 157–161. [Google Scholar]
- Stein MS, Wark JD, Scherer SC, et al. 1999. Falls relate to vitamin D and parathyroid hormone in an Australian nursing home and hostel. J. Am. Geriatr. Soc. 47: 1195–1201. [PubMed] [Google Scholar]
- Vazquez G, de Boland AR, Boland R. 1997. Stimulation of Ca2+ releaseactivated Ca2+ channels as a potential mechanism involved in nongenomic 1,25(OH)2-vitamin D3-induced Ca2+ entry in skeletal muscle cells. Biochem. Biophys. Res. Commun. 239: 562–565. [CrossRef] [PubMed] [Google Scholar]
- Verhaar HJJ, Samson MM, Jansen PAF, de Vreede PL, Manten JW, Duursma SA. 2000. Muscle strength, functional mobility and vitamin D in older women. Aging Clin. Exp. Res. 12: 455–460. [CrossRef] [Google Scholar]
- Wacker M, Holick MF. 2013. Vitamin D – effects on skeletal and extraskeletal health and the need for supplementation. Nutrients 10: 111–148. [CrossRef] [Google Scholar]
- Walrand S, Boirie Y. 2005. Optimizing protein intake in aging. Curr. Opin. Clin. Nutr. Metab. Care 8: 89–94. [CrossRef] [PubMed] [Google Scholar]
- Walrand S, Guillet C, Salles J, Cano N, Boirie Y. 2011. Physiopathological mechanism of sarcopenia. Clin. Geriatr. Med. 27: 365–385. [CrossRef] [PubMed] [Google Scholar]
- Wang H, Listrat A, Meunier B, Gueugneau M, Coudy-Gandilhon C, Combaret L, Taillandier D, Polge C, Attaix D, Lethias C, Lee K, Goh KL, Béchet D. 2013. Apoptosis in capillary endothelial cells in ageing skeletal muscle. Aging. Cell. [Google Scholar]
- Young A, Edwards RHT, Jones DA, Brenton DP. Quadriceps muscle strength and fibre size during the treatment of osteomalacia. In: Stokes IAF, ed. Mechanical factors and the skeleton. London: Libbey, 1981: 137–45. [Google Scholar]
- Zhu K, Austin N, Devine A, Bruce D, Prince RL. 2010. A randomized controlled trial of the effects of vitamin D on muscle strength and mobility in older women with vitamin D insufficiency. J. Am. Geriatr. Soc. 58: 2063–2068. [CrossRef] [PubMed] [Google Scholar]
- Ziambaras K, Dagogo-Jack S. 1997. Reversible muscle weakness in patients with vitamin D deficiency. West J. Med. 167: 435–439. [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.