Rapeseed / Colza
Open Access
Numéro
OCL
Volume 30, 2023
Rapeseed / Colza
Numéro d'article 18
Nombre de pages 9
Section Agronomy
DOI https://doi.org/10.1051/ocl/2023019
Publié en ligne 14 août 2023
  • Abdelmigid HM. 2012. Efficiency of random amplified polymorphic DNA (RAPD) and inter-simple sequence repeats (ISSR) markers for genotype fingerprinting and genetic diversity studies in canola. Afr J Biotechnol 11(24): 6409–6419. [Google Scholar]
  • Ana MJ, Ankica KS, Dejana SP, Radovan M, Nikola H. 2009. Phenotypic and molecular evaluation of genetic diversity of rapeseed (Brassica napus L.) genotypes. Afr J Biotechnol 8(19). [Google Scholar]
  • Anderson A, Churchill GA, Autrique JE, Tanksley SD, Sorrells ME. 1993. Optimizing parental selection for genetic linkage maps. Genome 36(1): 181–186. [CrossRef] [PubMed] [Google Scholar]
  • Caroli S, Santoni S, Ronfort J. 2011. AMaCAID: a useful tool for accurate marker choice for accession identification and discrimination. Mol Ecol Resour 11(4): 733–738. [CrossRef] [PubMed] [Google Scholar]
  • Chesnokov YV, Artemyeva AM. 2015. Evaluation of the measure of polymorphism information of genetic diversity. Agric Biol 50(5): 571–578. [Google Scholar]
  • DDFP. 2022. Statistiques sur les cultures oléagineuses au Maroc. Direction de Développement des Filières de Production (DDFP), Ministère de l’Agriculture, de la Pêche Maritime, du Développement Rural et des Eaux et Forêts. [Google Scholar]
  • Guirrou I, El Harrak A, El Antari A, et al. 2023. Bioactive compounds assessment in six Moroccan rapeseed (Brassica napus L.) varieties grown in two contrasting environments. Agronomy 13(2): 460. [CrossRef] [Google Scholar]
  • Madre JF. 2013. Logiciel mesurim Pro. Ver. 3,4. Académie d’Améins (accessed on 29 May 2022). [Google Scholar]
  • Mahjoob B, Zarini HN, Hashemi SH, Shamasbi FV. 2016. Comparison of ISSR, IRAP and REMAP markers for assessing genetic diversity in different species of Brassica spp. Russian J Genet 52(12): 1272–1281. [CrossRef] [Google Scholar]
  • Maraş-vanlioğlu FG, Yaman H, Kayaçetin F. 2020. Genetic diversity analysis of some species in Brassicaceae family with ISSR markers. Biotechnol Stud 29(1): 38–46. [CrossRef] [Google Scholar]
  • McVetty PB, Mietkiewska E, Omonov T, Curtis J, Taylor DC, Weselake RJ. 2016. Brassica spp. oils. Industrial oil crops. AOCS Press, pp. 113–156. [Google Scholar]
  • Nabloussi A. 2015. Amélioration génétique du colza : enjeux et réalisations pour un développement durable de la filière. ISBN: 978-9954-593-27-1. Rabat, Morocco : INRA. [Google Scholar]
  • Nagaraju J, Kathirvel M, Kumar RR, Siddiq EA, Hasnain SE. 2002. Genetic analysis of traditional and evolved Basmati and non-basmati rice varieties by using fluorescence-based ISSR-PCR and SSR markers. Proc Nat Acad Sci 99(9): 5836–5841. [CrossRef] [PubMed] [Google Scholar]
  • Paul M, Islam T, Hoque MI, Sarker RH. 2020. Analysis of genetic diversity in oilseed Brassica germplasm through ISSR markers and isozyme profiling. Bangladesh J Bot 49(1): 147–158. [CrossRef] [Google Scholar]
  • Powell W, Morgante M, Andre C, et al. 1996. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2(3): 225–238. [CrossRef] [Google Scholar]
  • Pradeep AR, Chatterjee SN, Nair CV. 2005. Genetic differentiation induced by selection in an inbred population of the silkworm Bombyx mori, revealed by RAPD and ISSR marker systems. J Appl Genet 46(3): 291. [PubMed] [Google Scholar]
  • Pradeep Reddy M, Sarla N, Siddiq EA. 2002. Inter simple sequence repeat (ISSR) polymorphism and its application in plant breeding. Euphytica 128(1): 9–17. [CrossRef] [Google Scholar]
  • Rohlf FJ. 2002. NTSYS-pc Numerical Taxonomy System, ver. 2.1. Setauket, New York: Exeter Publishing Ltd. [Google Scholar]
  • Safari S, Mehrabi AA, Safari Z. 2013. Efficiency of RAPD and ISSR markers in assessment of genetic diversity in Brassica napus genotypes. Int J Agric Crop Sci (IJACS) 5(3): 273–279. [Google Scholar]
  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard R. 1984. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Nat Acad Sci 81(24): 8014–8018. [CrossRef] [PubMed] [Google Scholar]
  • Sharma HK, Kumar A, Singh VV, et al. 2022. Genetic resources of brassicas. Cash Crops: Genetic Diversity, Erosion, Conservation and Utilization: 285–337. [CrossRef] [Google Scholar]
  • Sica M, Gamba G, Montieri S, Gaudio L, Aceto S. 2005. ISSR markers show differentiation among Italian populations of Asparagus acutifolius L. BMC Genet 6(1): 1–7. [Google Scholar]
  • Sokal RR, Michener CD. 1958. A statistical method for evaluating systematic relationships. Univ Kansas Sci Bull 38: 1409–1438. [Google Scholar]
  • Swarup S, Cargill EJ, Crosby K, Flagel L, Kniskern J, Glenn KC. 2021. Genetic diversity is indispensable for plant breeding to improve crops. Crop Sci 61(2): 839–852. [CrossRef] [Google Scholar]
  • Talhinhas P, Neves-Martins J, Leitao J. 2003. AFLP, ISSR and RAPD markers reveal high levels of genetic diversity among Lupinus spp. Plant Breed 122(6): 507–510. [CrossRef] [Google Scholar]
  • Tarıkahya-Hacıoğlu B. 2016. Molecular diversity of the wild Crambe (Brassicaceae) taxa in Turkey detected by intersimple sequence repeats (ISSRs). Ind Crops Prod 80: 214–219. [CrossRef] [Google Scholar]
  • Ton LB, Neik TX, Batley J. 2020. The use of genetic and gene technologies in shaping modern rapeseed cultivars (Brassica napus L.). Genes 11(10): 1161. [CrossRef] [PubMed] [Google Scholar]
  • Wiesner I, Wiesnerová D. 2003. Effect of resolving medium and staining procedure on inter-simple-sequence-repeat (ISSR) patterns in cultivated flax germplasm. Genetic Resour Crop Evol 50(8): 849–853. [CrossRef] [Google Scholar]
  • Yu C, Leišová L, Kučera V, et al. 2007. Assessment of genetic diversity of yellow-seeded rapeseed (Brassica napus L.) accessions by AFLP markers. Czech J Genet Plant Breed 43(3): 105. [CrossRef] [Google Scholar]
  • Zietkiewicz E, Rafalski A, Labuda D. 1994. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20(2): 176–183. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.