Numéro
OCL
Volume 30, 2023
Creating new oil & protein crop value chains / Construire de nouvelles filières oléoprotéagineuses
Numéro d'article 3
Nombre de pages 9
Section Agronomy
DOI https://doi.org/10.1051/ocl/2023001
Publié en ligne 7 février 2023
  • Abramovic A, Abram V. 2005. Physicochemical properties, composition and oxidative stability of Camelina sativa oil. Food Technology and Biotechnology 43: 63–70. [Google Scholar]
  • Berti M, Wilckens R, Fischer S, Solis A, Johnson B. 2011. Seeding date influence on Camelina seed yield, yield components, and oil content in Chile. Industrial Crops and Products 34(2): 1358–1365. [CrossRef] [Google Scholar]
  • Budin JT, Breene WM, Putnam DH. 1995. Some compositional properties of camelina (Camelina sativa L. Crantz) seeds and oils. Journal of American Oil Chemists’ Society 72: 309–315. [CrossRef] [Google Scholar]
  • Eidhin DN, Burke J, Lynch B, O’Beirne D. 2003. Effects of dietary supplementation with camelina oil on porcine blood lipids. Journal of Food Science 68: 671–679. [CrossRef] [Google Scholar]
  • Enjalbert J, Johnson J. 2011. Guide for producing dryland Camelina in eastern Colorado. Fort Collins: Colorado State University Extension. [Google Scholar]
  • Gesch R, Cermak S. 2011. Sowing date and tillage effects on fall-seeded Camelina in the northern corn belt. Agronomy Journal 103(4): 980–987. [CrossRef] [Google Scholar]
  • Hurni H. 1998. Soil Conservation Research Programme, Agroecological Belts of Ethiopia. Centre for Development and Environment University of Bern, Switzerland in association with The Ministry of Agriculture, Ethiopia. Research Report. [Google Scholar]
  • Jiang Y, Caldwell CD, Falk KC. 2014. Camelina seed quality in response to applied nitrogen, genotype and environment. Canadian Journal of Plant Science 94(5): 971–980. [CrossRef] [Google Scholar]
  • Karvonen HM, Aro A, Tapola NS, Salminen I, Uusitupa MIJ, Sarkkinen ES. 2002. Effect of linolenic acid-rich Camelina sativa oil on serum fatty acid composition and serum lipids in hypercholesterolemic subjects. Metabolism 51: 1253–1260. [CrossRef] [PubMed] [Google Scholar]
  • Krohn BJ, Fripp M. 2012. A life cycle assessment of biodiesel derived from the “niche filling” energy crop Camelina in the USA. Applied Energy 92: 92–98. [CrossRef] [Google Scholar]
  • Lošák T, Hlusek J, Martinec J, et al. 2011. Effect of combined nitrogen and sulfur fertilization on yield and qualitative parameters of Camelina sativa L. Crtz. (false-flax). Acta Agriculturae Scandinavica, Section B. Soil & Plant Science 61(4): 313–321. [Google Scholar]
  • Manore D, Yohannes A. 2019. Evaluating growth, seed yield and yield attributes of camelina (Camelina sativa L) in response to seeding rate and nitrogen fertilizer levels under irrigation condition, Southern Ethiopia. Agriculture, Forestry and Fisheries 8(2): 31–35. [CrossRef] [Google Scholar]
  • Malhi SS, Johnson EN, Hall LM, May WE, Phelps S, Nybo B. 2014. Effect of nitrogen fertilizer application on seed yield, N uptake, and seed quality of Camelina sativa. Canadian Journal of Soil Science 94: 35–47. [CrossRef] [Google Scholar]
  • Moser RB. 2010. Camelina (Camelina sativa L.) oil as a biofuel’s feedstock: golden opportunity or false hope? Lipid Technology 22(12): 270–273. [CrossRef] [Google Scholar]
  • Nleya T, Bhattarai D, Alberti P. 2021. Agronomic response of camelina to nitrogen and seeding rate on the northern great plains. Nitrogen in Agriculture − Physiological, Agricultural and Ecological Aspects. https://doi.org/10.5772/intechopen.95794 [Google Scholar]
  • Obour A, Sintim H, Obeng E, Zheljazkov D. 2015. Oilseed camelina (Camelina sativa L. Crantz): production systems, prospects and challenges in the USA Great Plains. Advances in Plants and Agriculture Research 2: 1–10 [CrossRef] [Google Scholar]
  • Olsen SR, Cole FS, Dean LA. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circ. No. 939, Washington D.C. [Google Scholar]
  • Pavlista A, Isbell T, Baltensperger D, Hergert G. 2011. Planting date and development of spring-seeded irrigated canola, brown mustard and camelina. Industrial Crops and Products 33(2): 451–456. [CrossRef] [Google Scholar]
  • Putnam D, Budin J, Field L, Breene W. 1993. Camelina: a promising low-input oilseed. In: New crops. New York: Wiley, pp. 314. [Google Scholar]
  • Rathke GW, Behrens T, Diepenbrock W. 2006. Integrated nitrogen management strategies to improve seed yield, oil content and nitrogen efficiency of winter oilseed rape (Brassica napus L.): a review. Agriculture, Ecosystems and Environments 117(2): 80–108. [CrossRef] [Google Scholar]
  • Razeq FM, Kosma DK, Rowland O, Molina I. 2014. Extracellular lipids of Camelina sativa: characterization of chloroform-extractable waxes from aerial and subterranean surfaces. Phytochemistry 106: 188–196. [CrossRef] [PubMed] [Google Scholar]
  • Russo R, Reggiani R. 2012. Antinutritive compounds in twelve Camelina sativa genotypes. American Journal of Plant Sciences (3): 1408–1412. [CrossRef] [Google Scholar]
  • Schillinger WF, Wysocki DJ, Chastain TG, Guy SO, Karow RS. 2012. Camelina: planting date and method effects on stand establishment and seed yield. Field Crops Research 130: 138–144. [CrossRef] [Google Scholar]
  • Strasil Z, Skala J. 1995. Effects of locality, N-fertilization and crop density on production and quality of Camelina sativa seeds. Fragmenta Agronomica (Poland) 12: 4445. [Google Scholar]
  • Solis A, Vidal I, Paulino L, Johnson BL, Berti MT. 2013. Camelina seed yield response to nitrogen, sulfur, and phosphorus fertilizer in South Central Chile. Industrial Crops and Products 44: 132–138. [CrossRef] [Google Scholar]
  • Urbaniak SD, Caldwell CD, Zheljazkov VD, Lada R, Luan L. 2008. The effect of cultivar and applied nitrogen on the performance of Camelina sativa L. in the maritime provinces of Canada. Canadian Journal of Plant Science 88: 111–119. [CrossRef] [Google Scholar]
  • Wysocki DJ, Chastain TG, Schillinger WF, Guy SO, Karow RS. 2013. Camelina: seed yield response to applied nitrogen and sulfur. Field Crops Research 145: 60–66. [CrossRef] [Google Scholar]
  • Zhang CJ, Gao Y, Jiang C, et al. 2021. Camelina seed yield and quality in different growing environments in northern China. Industrial Crops and Products 172: 114071. [CrossRef] [Google Scholar]
  • Zubr J, Matthäus B. 2002. Effects of growth conditions on fatty acids and tocopherols in Camelina sativa oil. Industrial Crops and Products 15: 155–162. [CrossRef] [Google Scholar]
  • Zubr J. 2003. Qualitative variation of Camelina sativa seed from different locations. Industrial Crops and Products 17: 161–169. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.