Open Access
Numéro |
OCL
Volume 28, 2021
|
|
---|---|---|
Numéro d'article | 32 | |
Nombre de pages | 10 | |
Section | Agronomy | |
DOI | https://doi.org/10.1051/ocl/2021018 | |
Publié en ligne | 18 mai 2021 |
- Abd El-Razzik MI. 2018. Seasonal fluctuation of the cotton mealybugs, Phenacoccus solenopsis (Hemiptera: Pseudococcidae) and its natural enemies on mulberry trees in Egypt. Egypt J Plant Protect Res Inst 1(1): 74–83. [Google Scholar]
- Akcura M, Kokten K. 2017. Variations in grain mineral concentrations of Turkish wheat landraces germplasm. Qual Assur Saf Crops Foods 9(2): 153–159. https://doi.org/10.3920/QAS2016.0886. [Google Scholar]
- Alakhdar HH. 2020. Efficacy of Chitosan Nano-Particles against two Tetranychid mites and two associated Predaceous mites (Acari: Tetranychidae: Phytoseiidae). Egypt Sci J Pestic 6(1): 8–13. https://doi.org/10.13140/RG.2.2.20972.31363/3. [Google Scholar]
- Alakhdar HH, Ghareeb ZE, Rabie EM. 2015. Evaluation some genotypes of soybeans yield under pest infestation. Int J Sci Res Agric Sci 2: 007–017. https://doi.org/10.13140/RG.2.2.15939.14888. [Google Scholar]
- Alakhdar HH, Shaban KA, Esmaeil MA, Abdel Fattah AK. 2020. Influence of organic and biofertilizers on some soil chemical properties, wheat productivity and infestation levels of some piercing-sucking pests in saline soil. Middle East J Agric Res 09(3): 586–598. https://doi.org/10.36632/mejar/2020.9.3.45. [Google Scholar]
- Alhewairini SS. 2018. Efficacy comparison of HUWA-SAN TR50, abamectin, and bifenthrin for the control of the oriental spider mite, Eutetranychus orientalis (Klein) (Acari: Tetranychidae). Pak J Agric Sci 55(4): 1003–1007. [Google Scholar]
- Arif M, Rafiq M, Ghaffar A. 2009. Host plants of cotton mealybug (Phenacoccus solenopsis): A new menace to cotton agroecosystems of Punjab. Pak Int J Agric Biol 11: 163–167. [Google Scholar]
- Çelik H, Vahap KA, Bulent AB, Turan MA. 2011. Effect of foliar-applied humic acid to dry weight and mineral nutrient uptake of maize under calcareous soil conditions. Comm Soil Sci Plant Anal 42(1): 29–38. https://doi.org/10.1080/00103624.2011.528490. [Google Scholar]
- Chatterjee R, Choudhuri P, Laskar V. 2013. Influence of nutrient management practices for minimizing whitefly (Bemisia tabaci Genn) population in Tomato (Lycopersicon: esculentum Mill.). Int J Sci Environ Technol 2(5): 956–962. [Google Scholar]
- Czepak C, Coelho ASG, Rezende M, et al. 2018. Bemisia tabaci MEAM1 population surveys in soybean cultivation. Netherl Entomol Soc Entomol Exp Appl 166: 215–223. https://doi.org/10.1111/eea.12656. [Google Scholar]
- De Leon N, Jannink JL, Edwards JW, Kaeppler SM. 2016. Introduction to a special issue on genotype by environment interaction. Crop Sci 56(5): 2081–2089. https://doi.org/10.2135/cropsci2016.07.0002in. [Google Scholar]
- Ekin Z. 2019. Integrated use of humic acid and plant growth promoting rhizobacteria to ensure higher potato productivity in sustainable agriculture. Sustainability 11(12): 1–13. https://doi.org/10.3390/su11123417. [CrossRef] [Google Scholar]
- Fand B, Suroshe S. 2015. The invasive mealybug Phenacoccuss olenopsis Tinsley, a threat to tropical and subtropical agricultural and horticultural production systems – a review. Crop Protect 69: 34–43. https://doi.org/10.1016/j.cropro.2014.12.001. [Google Scholar]
- FAO. 2018. Food and Agric. Organization of the United Nations Statistical. http://www.fao.org/faostat/en/#data/QC. [Google Scholar]
- Fikru JH, Leon GH. 2003. Changes in soybean gas-exchange after moisture stress and spider mite injury. Environ Entomol 32: 433–440. https://doi.org/10.1603/0046-225X-32.3.433. [Google Scholar]
- Gabriel KR. 1971. The biplot graphic display of matrices with application to principal component analysis. Biometrika 58: 453–467. https://www.jstor.org/stable/2334381. [CrossRef] [MathSciNet] [Google Scholar]
- Gan QT, Wang C, Cochrane PM. 2005. Modulation of surface charge, particle size, and morphological properties of chitosan-TPP nanoparticles intended for gene delivery. Coll Surf B: Bioinfo 44(2-3): 65–73. https://doi.org/10.1016/j.colsurfb.2005.06.001. [Google Scholar]
- Golkar P, Arzani A, Rezaei AM. 2011. Determining relationships among seed yield, yield components, and morpho-phenological traits using multivariate analyses in safflower (Carthamus tinctorious L.). Ann Biol Res 2(3): 162–169. [Google Scholar]
- Henderson CF, Tilton EW. 1955. Tests with acaricides against the brown wheat mite. J Econ Entomol 48: 157–161. [Google Scholar]
- Kenneth WC, Edwin EL, Peter BS. 2002. Compatibility of acaricide residues with Phytoseiulus persimilis and their effects on Tetranychus urticae. Am Soc Horticult Sci 37(6): 906–909. https://doi.org/10.21273/HORTSCI.37.6.906. [Google Scholar]
- Kumari S, Anuradha Ch, Anuradha K, Gireesh N. 2015. Comparative toxicities of novel and conventional acaricides against different stages of Tetranychus urticae Koch (Acarina: Tetranychidae). J Saudi Soc Agric Sci 16(2): 191–196. https://doi.org/10.1016/j.jssas.2015.06.003. [Google Scholar]
- Lasota JA, Dybas RA. 1990. Abamectin as a pesticide for agricultural use. Acta Leidensia 59: 217–225. [PubMed] [Google Scholar]
- Levene H. 1960. Robust tests for equality of variances. Ingram Olkin, Harold Hotel ling, Italia, Stanford, Univ. Press, pp. 278–292. [Google Scholar]
- Márquez A, Won E, García E, Olivero J. 2006. Efficacy assay of different phytosanitary chemicals for the control of Eutetranychus orientalis (Klein) (Oriental Spider Mite) on fine lemon and Valencia-Late orange crops. IOBC/WPRS Bull 29: 305–310. [Google Scholar]
- Massoud AH, Derbalah AS, El-Shshtaway HF, Sleem M. 2014. Efficacy, persistence, and removal of chlorpyrifos-methyl after application against cotton leafworm in soybean. J Mater Environ Sci 5(5): 1398–1405. https://doi.org/10.3923/jest.2014.294.304. [Google Scholar]
- Mesbah IIL, Khalafalla EME, Eissa GM, Fatma H, Khattab MA. 2019. Susceptibility of some soybean varieties to certain piercing-sucking insects under the field conditions of North Delta. Egypt J Agric Res 97(1): 159–165. https://dx.doi.org/10.21608/ejar.2019.68613. [Google Scholar]
- Moghadam SG, Ahadiyat A, Edward A. 2016. Ueckermann species composition of tetranychoid mites (Acari: Trombidiformes: Prostigmata: Tetranychoidea) in main landscapes of Tehran and modelling ecological niche of Tetranychoidea in main climates of Tehran Province, Iran. Biologia 71(10): 1151–1166. https://doi.org/10.1515/biolog-2016-0138. [Google Scholar]
- Panda S, Samal MK, Patnaik HP. 2005. Effect of oilcake-based vermicompost on the incidence of sucking insect pests and fruit yield in chilli. J Appl Zool Res 16(2): 184–185. https://doi.org/10.19026/rjees.5.5645. [Google Scholar]
- Prabhat K, Poehling HM. 2007. Effects of azadirachtin, abamectin, and spinosad on sweet-potato whitefly (Homoptera: Aleyrodidae) on tomato plants under laboratory and greenhouse conditions in the humid tropics. J Econ Entomol 100(2): 411–20. https://doi.org/10.1603/0022-0493(2007)100[411:EOAAAS]2.0.CO;2. [CrossRef] [PubMed] [Google Scholar]
- Rabea EI, Badawy MEI, Rogge TM, et al. 2005. Insecticidal and fungicidal activity of new synthesized Chitosan derivatives. P Man Sci 61: 951–960. https://doi.org/10.1002/ps.1085. [Google Scholar]
- Ravi N, Dhandatani N, Sathiah N, Murugan M. 2006. Influence of organic manures and fertilizers on the incidence of sucking pest of sunflower. Ann Plant Protect Sci 14(1): 41–44. [Google Scholar]
- Rezk M, Hassan AT, El-Deeb MF, Shaarawy N, Dewer Y. 2019. The impact of insecticides on the cotton mealybugs Phenacoccus solenopsis (Tinsley): Efficacy on potato, a new record of host plant in Egypt. J Plant Protect Res 59(1). https://doi.org/10.24425/jppr.2019.126042. [Google Scholar]
- Sabbour MM. 2016. Observations of the effect of Chitosan and its nano compositions against the locust Schistocercagregaria (Orthoptera: Acrididae). Int J Chem Tech Res 9(6): 270–276. [Google Scholar]
- Sahab AF, Waly AI, Sabbour MM, Nawar LS. 2015. Synthesis, antifungal, and insecticidal potential of Chitosan (CS)-g-poly (acrylic acid) (PAA) nanoparticles against some seed-borne fungi and insects of soybean. Int J Chem Tech Res 8(2): 589–598. https://doi.org/10.13140/RG.2.1.1198.8325. [Google Scholar]
- Sendecor GW, Cochran WG. 1981. Statistical methods, 7th ed. Iowa, USA: Iowa State Univ. Press. [Google Scholar]
- Sendecor GW, Cochran WG. 1989. Statistical methods, 8th ed. Iowa State University Press. [Google Scholar]
- US Soybean Export Council. 2019. How the global oilseed and grain trade works. Maine, US: Soyatech, LLC, Southwest Harbor. https://ussec.org/. [Google Scholar]
- Xu S, Zhang L, McLaughlin NB, Chen Q, Liu J. 2015. Effect of synthetic and natural water-absorbing soil amendment soil physical properties under potato production in a semi-arid region. Soil Tillage Res 148: 31–39. https://doi.org/10.1016/j.still.2014.10.002. [Google Scholar]
- Yan W. 2002. Singular value partitioning in biplot analysis of multi-environment trial data. Agron J 94: 990–996. https://doi.org/10.2134/agronj2002.0990. [Google Scholar]
- Yan W. 2014. Crop variety trials: Data management and analysis. Hoboken, New Jersey, USA: Wiley-Blackwell, 349 p. [Google Scholar]
- Yan W, Frégeau-Reid J. 2008. Breeding line selection is based on multiple traits. Crop Sci 48: 417–423. https://doi.org/10.2135/cropsci2007.05.0254. [Google Scholar]
- Yan W, Hunt L. 2002. Biplot analysis of diallel data. Crop Sci 42: 21–30. https://doi.org/10.2135/cropsci2002.0021. [CrossRef] [PubMed] [Google Scholar]
- Yan W, Rajcan I. 2002. Biplot analysis of test sites and trait relations of soybean in Ontario. Crop Sci 42: 11–20. https://doi.org/10.2135/cropsci2002.0011. [CrossRef] [PubMed] [Google Scholar]
- Yan W, Tinker NA. 2005. An integrated system of biplot analysis for displaying, interpreting, and exploring genotype by environment interactions. Crop Sci 45: 1004–1016. https://doi.org/10.2135/cropsci2004.0076. [Google Scholar]
- Yan W, Hunt LA, Sheng Q, Szlavnics Z. 2000. Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop Sci 40: 597–605. https://doi.org/10.2135/cropsci2000.403597x. [Google Scholar]
- Zhang M, Tan T. 2003. Insecticidal and fungicidal activities of Chitosan and Oligo-Chitosan. Beijing, China: Department of Biochemical Engineering, Beijing University of Chemical Technology, pp. 391–400. https://doi.org/10.1177%2F0883911503039019. [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.