Volume 27, 2020
Minor oils from atypical plant sources / Huiles mineures de sources végétales atypiques
Numéro d'article 8
Nombre de pages 10
Publié en ligne 19 février 2020
  • Ajayi OB, Ajayi DD. 2009. Effect of oilseed diets on plasma lipid profile in albino rats. Pak J Nutr 8: 116–118. [CrossRef] [Google Scholar]
  • Ajayi IA, Oderinde RA, Ogunkoya BO, Egunyomi A, Taiwo VO. 2007. Chemical analysis and preliminary toxicological evaluation of Garcinia mangostana seeds and seed oil. Food Chem 101(3): 999–1004. [Google Scholar]
  • Alfawaz MA. 2004. Chemical composition and oil characteristics of pumpkin (Cucurbita maxima) seed kernels. Food Sci Agric 2(1): 5–18. [Google Scholar]
  • Aljane F, Toumi I, Ferchichi A. 2007. HPLC determination of sugars and atomic absorption analysis of mineral salts in fresh figs of Tunisian cultivars. Afr J Biotechnol 6(5): 599–602. [Google Scholar]
  • Aronson WJ, Glaspy JA, Reddy ST, Reese D, Heber D, Bagga D. 2001. Modulation of omega-3/omega-6 polyunsaturated ratios with dietary fish oils in men with prostate cancer. Urology 58: 283–288. [Google Scholar]
  • Berry SK. 1980. Cyclopropene fatty acids in some Malaysian edible seeds and nuts: I. Durian (Durio zibethinus, Murr.). Lipids 15(6): 452–455. [Google Scholar]
  • Brand-Williams W, Cuvelier ME, Berset CL, WT. 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Technol 28(1): 25–30. [Google Scholar]
  • Carvalho ISD, Miranda I, Pereira H. 2006. Evaluation of oil composition of some crops suitable for human nutrition. Ind Crop Prod 24(1): 75–78. [CrossRef] [Google Scholar]
  • Chai KF, Mohd Adzahan N, Karim R, Rukayadi Y, Ghazali HM. 2018. Characteristics of fat, and saponin and tannin contents of 11 varieties of rambutan (Nephelium lappaceum L.) seed. Int J Food Prop 21(1): 1091–1106. [CrossRef] [Google Scholar]
  • Chielle DP, Bertuol DA, Meili L, Tanabe EH, Dotto GL. 2016. Convective drying of papaya seeds (Carica papaya L.) and optimization of oil extraction. Ind Crop Prod 85: 221–228. [CrossRef] [Google Scholar]
  • Chougui N, Tamendjari A, Hamidj W, et al. 2013. Oil composition and characterisation of phenolic compounds of Opuntia ficus − indica seeds. Food Chem 139(1-4): 796–803. [Google Scholar]
  • DACH. 2002. Referenzwerte für die Nährstoffzufuhr (1st ed.). Umschau/Braus GmbH. FAO/WHO/UNU (1985). Energy and protein requirements. Report of a joint FAO/WHO/UNU expert consultation. WHO technical report series no. 724. Geneva: WHO. [Google Scholar]
  • Del Caro A, Piga A. 2007. Polyphenol composition of peel and pulp of two Italian fresh fig fruits cultivars (Ficus carica L.). Eur Food Res Technol 226(4): 715–719. [Google Scholar]
  • El-Shobaki FA, El-Bahay AM, Esmail RSA, El-Megeid AA, Esmail NS. 2010. Effect of figs fruit (Ficus carica L.) and its leaves on hyperglycemia in alloxan diabetic rats. World J Dairy Food Sci 5(1): 47–57. [Google Scholar]
  • Favati F, Caporale G, Bertuccioli M. 1994. Rapid determination of phenol content in extra virgin olive oil. Grasas y Aceites 45(1-2): 68–70. [CrossRef] [Google Scholar]
  • Gaaliche B, Trad M, Mars M. 2011. Effect of pollination intensity, frequency and pollen source on fig (Ficus carica L.) productivity and fruit quality. Scientia Horticulturae 130(4): 737–742. [Google Scholar]
  • Górnaś P, Rudzińska M. 2016. Seeds recovered from industry by-products of nine fruit species with a high potential utility as a source of unconventional oil for biodiesel and cosmetic and pharmaceutical sectors. Ind Crops Prod 83: 329–338. [Google Scholar]
  • Hu FB. 2001. The balance between ω-6 and ω-3 fatty acids and the risk of coronary heart disease. Nutrition 17: 741–742. [CrossRef] [PubMed] [Google Scholar]
  • Hssaini L, Charafi J, Hanine H, et al. 2019. Comparative analysis and physio-biochemical screening of an ex-situ fig (Ficus carica L.) collection. Hortic Environ Biotechnol 60(5): 671–683. [CrossRef] [Google Scholar]
  • Icyer NC, Toker OS, Karasu S, Tornuk F, Kahyaoglu T, Arici M. 2017. Microencapsulation of fig seed oil rich in polyunsaturated fatty acids by spray drying. J Food Meas Charact 11(1): 50–57. [CrossRef] [Google Scholar]
  • Jeong W, Lachance P. 2001. Phytosterols and fatty acids in fig (Ficus carica, var. Mission) fruit and tree components. J Food Sci 66(2): 278–281. [Google Scholar]
  • Jun LI, Tian YZ, Sun BY, Yang D, Chen JP, Men QM. 2012. Analysis on volatile constituents in leaves and fruits of Ficus carica by GC-MS. Chinese Herbal Med 4(1): 63–69. [Google Scholar]
  • Mahmoudi S, Khali M, Benkhaled A, et al. 2018. Fresh figs (Ficus carica L.): Pomological characteristics, nutritional value, and phytochemical properties. Eur J Hortic Sci 83(2): 104–113. [CrossRef] [Google Scholar]
  • Mopuri R, Islam MS. 2016. Antidiabetic and anti-obesity activity of Ficus carica: In vitro experimental studies. Diabetes & Metabolism 42(4): 300. [Google Scholar]
  • Nakilcioğlu-Taş E. 2019 Biochemical characterization of fig (Ficus carica L.) seeds. J Agric Sci 25(2): 232–237. [Google Scholar]
  • Oomah BD, Mazza G. 1999. Health benefits of phytochemicals from selected Canadian crops. Trends Food Sci Technol 10(6-7): 193–198. [Google Scholar]
  • Prasad NBL, Azeemoddin G. 1994. Characteristics and composition of guava (Psidium guajava L.) seed and oil. J Am Oil Chem’ Soc 71(4): 457–458. [CrossRef] [Google Scholar]
  • Raihana AR, Marikkar J, Amin I, Shuhaimi M. 2015. A review on food values of selected tropical fruits’ seeds. Int J Food Prop 18(11): 2380–2392. [CrossRef] [Google Scholar]
  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26(9-10): 1231–1237. [Google Scholar]
  • Rosianski Y, Freiman ZE, Cochavi SM, Yablovitz Z, Kerem Z, Flaishman MA. 2016. Advanced analysis of developmental and ripening characteristics of pollinated common-type fig (Ficus carica L.). Scientia Horticulturae 198: 98–106. [Google Scholar]
  • Simopoulos AP. 2002. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother 56(8): 365–379. [Google Scholar]
  • Simopoulos A. 2016. An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity. Nutrients 8(3): 128. [CrossRef] [PubMed] [Google Scholar]
  • Slatnar A, Klancar U, Stampar F, Veberic R. 2011. Effect of drying of figs (Ficus carica L.) on the contents of sugars, organic acids, and phenolic compounds. J Agric Food Chem 59(21): 11696–11702. [CrossRef] [PubMed] [Google Scholar]
  • Solomon A, Golubowicz S, Yablowicz Z, et al. 2006. Antioxidant activities and anthocyanin content of fresh fruits of common fig (Ficus caricaL.). J Agric Food Chem 54(20): 7717–7723. [CrossRef] [PubMed] [Google Scholar]
  • Soong YY, Barlow PJ. 2004. Antioxidant activity and phenolic content of selected fruit seeds. Food Chem 88(3): 411–417. [Google Scholar]
  • Stanner SA, Hughes J, Kelly CNM, Buttriss J. 2004. A review of the epidemiological evidence for the “antioxidant hypothesis”. Public Health Nutr 7: 407–422. [CrossRef] [PubMed] [Google Scholar]
  • Talcott ST, Duncan CE, Del Pozo-Insfran D, Gorbet DW. 2005. Polyphenolic and antioxidant changes during storage of normal, mid, and high oleic acid peanuts. Food Chem 89(1): 77–84. [Google Scholar]
  • Taoufik F, Zine S, El Hadek M, et al. 2015. Oil content and main constituents of cactus seed oils Opuntia ficus Indica of different origin in Morocco. Med J Nutr Metab 8(2): 85–92. [Google Scholar]
  • Tsimidou M, Papadopoulos G, Boskou D. 1992. Determination of phenolic compounds in virgin olive oil by reversed-phase HPLC with emphasis on UV detection. Food Chem 44(1): 53–60. [Google Scholar]
  • Veberic R, Mikulic-Petkovsek M. 2016. Phytochemical composition of common fig (Ficus carica L.) Cultivars. Nutr Comp Fruit Cultivars 235–255. [Google Scholar]
  • Vemmos SN, Petri E, Stournaras V. 2013. Seasonal changes in photosynthetic activity and carbohydrate content in leaves and fruit of three fig cultivars (Ficus carica L.). Scientia Horticulturae 160: 198–207. [Google Scholar]
  • Velasco L, Goffman FD, Becker HC. 1998. Variability for the fatty acid composition of the seed oil in a germplasm collection of the genus Brassica. Genet Resour Crop Ev 45(4): 371–382. [CrossRef] [Google Scholar]
  • Vermaak I, Kamatou GPP, Komane-Mofokeng B, Viljoen AM, Beckett K. 2011. African seed oils of commercial importance-Cosmetic applications. S Afr J Bot 77(4): 920–933. [CrossRef] [Google Scholar]
  • Vosoughkia M, Hossainchi Ghareaghag L, Ghavami M, Gharachorloo M, Delkhosh B. 2012. Evaluation of oil content and fatty acid composition in seeds of different genotypes of safflower. Int J Agric Sci Res 2(1): 59–66. [Google Scholar]
  • Wu N, Fu K, Fu YJ, et al. 2009. Antioxidant activities of extracts and main components of pigeonpea [Cajanus cajan (L.) Millsp.] leaves. Molecules 14(3): 1032–1043. [CrossRef] [PubMed] [Google Scholar]
  • Yanty NAM, Lai OM, Osman A, Long K, Ghazali HM. 2008. Physicochemical properties of Cucumis melo Var. Inodorus (Honeydew Melon) seed and seed oil. J Food Lipids 15(1): 42–55. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.