Volume 27, 2020
Minor oils from atypical plant sources / Huiles mineures de sources végétales atypiques
Article Number 8
Number of page(s) 10
Published online 19 February 2020
  • Ajayi OB, Ajayi DD. 2009. Effect of oilseed diets on plasma lipid profile in albino rats. Pak J Nutr 8: 116–118. [CrossRef] [Google Scholar]
  • Ajayi IA, Oderinde RA, Ogunkoya BO, Egunyomi A, Taiwo VO. 2007. Chemical analysis and preliminary toxicological evaluation of Garcinia mangostana seeds and seed oil. Food Chem 101(3): 999–1004. [Google Scholar]
  • Alfawaz MA. 2004. Chemical composition and oil characteristics of pumpkin (Cucurbita maxima) seed kernels. Food Sci Agric 2(1): 5–18. [Google Scholar]
  • Aljane F, Toumi I, Ferchichi A. 2007. HPLC determination of sugars and atomic absorption analysis of mineral salts in fresh figs of Tunisian cultivars. Afr J Biotechnol 6(5): 599–602. [Google Scholar]
  • Aronson WJ, Glaspy JA, Reddy ST, Reese D, Heber D, Bagga D. 2001. Modulation of omega-3/omega-6 polyunsaturated ratios with dietary fish oils in men with prostate cancer. Urology 58: 283–288. [Google Scholar]
  • Berry SK. 1980. Cyclopropene fatty acids in some Malaysian edible seeds and nuts: I. Durian (Durio zibethinus, Murr.). Lipids 15(6): 452–455. [Google Scholar]
  • Brand-Williams W, Cuvelier ME, Berset CL, WT. 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Technol 28(1): 25–30. [CrossRef] [Google Scholar]
  • Carvalho ISD, Miranda I, Pereira H. 2006. Evaluation of oil composition of some crops suitable for human nutrition. Ind Crop Prod 24(1): 75–78. [CrossRef] [Google Scholar]
  • Chai KF, Mohd Adzahan N, Karim R, Rukayadi Y, Ghazali HM. 2018. Characteristics of fat, and saponin and tannin contents of 11 varieties of rambutan (Nephelium lappaceum L.) seed. Int J Food Prop 21(1): 1091–1106. [CrossRef] [Google Scholar]
  • Chielle DP, Bertuol DA, Meili L, Tanabe EH, Dotto GL. 2016. Convective drying of papaya seeds (Carica papaya L.) and optimization of oil extraction. Ind Crop Prod 85: 221–228. [CrossRef] [Google Scholar]
  • Chougui N, Tamendjari A, Hamidj W, et al. 2013. Oil composition and characterisation of phenolic compounds of Opuntia ficus − indica seeds. Food Chem 139(1-4): 796–803. [Google Scholar]
  • DACH. 2002. Referenzwerte für die Nährstoffzufuhr (1st ed.). Umschau/Braus GmbH. FAO/WHO/UNU (1985). Energy and protein requirements. Report of a joint FAO/WHO/UNU expert consultation. WHO technical report series no. 724. Geneva: WHO. [Google Scholar]
  • Del Caro A, Piga A. 2007. Polyphenol composition of peel and pulp of two Italian fresh fig fruits cultivars (Ficus carica L.). Eur Food Res Technol 226(4): 715–719. [Google Scholar]
  • El-Shobaki FA, El-Bahay AM, Esmail RSA, El-Megeid AA, Esmail NS. 2010. Effect of figs fruit (Ficus carica L.) and its leaves on hyperglycemia in alloxan diabetic rats. World J Dairy Food Sci 5(1): 47–57. [Google Scholar]
  • Favati F, Caporale G, Bertuccioli M. 1994. Rapid determination of phenol content in extra virgin olive oil. Grasas y Aceites 45(1-2): 68–70. [CrossRef] [Google Scholar]
  • Gaaliche B, Trad M, Mars M. 2011. Effect of pollination intensity, frequency and pollen source on fig (Ficus carica L.) productivity and fruit quality. Scientia Horticulturae 130(4): 737–742. [Google Scholar]
  • Górnaś P, Rudzińska M. 2016. Seeds recovered from industry by-products of nine fruit species with a high potential utility as a source of unconventional oil for biodiesel and cosmetic and pharmaceutical sectors. Ind Crops Prod 83: 329–338. [Google Scholar]
  • Hu FB. 2001. The balance between ω-6 and ω-3 fatty acids and the risk of coronary heart disease. Nutrition 17: 741–742. [CrossRef] [PubMed] [Google Scholar]
  • Hssaini L, Charafi J, Hanine H, et al. 2019. Comparative analysis and physio-biochemical screening of an ex-situ fig (Ficus carica L.) collection. Hortic Environ Biotechnol 60(5): 671–683. [CrossRef] [Google Scholar]
  • Icyer NC, Toker OS, Karasu S, Tornuk F, Kahyaoglu T, Arici M. 2017. Microencapsulation of fig seed oil rich in polyunsaturated fatty acids by spray drying. J Food Meas Charact 11(1): 50–57. [CrossRef] [Google Scholar]
  • Jeong W, Lachance P. 2001. Phytosterols and fatty acids in fig (Ficus carica, var. Mission) fruit and tree components. J Food Sci 66(2): 278–281. [Google Scholar]
  • Jun LI, Tian YZ, Sun BY, Yang D, Chen JP, Men QM. 2012. Analysis on volatile constituents in leaves and fruits of Ficus carica by GC-MS. Chinese Herbal Med 4(1): 63–69. [Google Scholar]
  • Mahmoudi S, Khali M, Benkhaled A, et al. 2018. Fresh figs (Ficus carica L.): Pomological characteristics, nutritional value, and phytochemical properties. Eur J Hortic Sci 83(2): 104–113. [CrossRef] [Google Scholar]
  • Mopuri R, Islam MS. 2016. Antidiabetic and anti-obesity activity of Ficus carica: In vitro experimental studies. Diabetes & Metabolism 42(4): 300. [Google Scholar]
  • Nakilcioğlu-Taş E. 2019 Biochemical characterization of fig (Ficus carica L.) seeds. J Agric Sci 25(2): 232–237. [Google Scholar]
  • Oomah BD, Mazza G. 1999. Health benefits of phytochemicals from selected Canadian crops. Trends Food Sci Technol 10(6-7): 193–198. [Google Scholar]
  • Prasad NBL, Azeemoddin G. 1994. Characteristics and composition of guava (Psidium guajava L.) seed and oil. J Am Oil Chem’ Soc 71(4): 457–458. [CrossRef] [Google Scholar]
  • Raihana AR, Marikkar J, Amin I, Shuhaimi M. 2015. A review on food values of selected tropical fruits’ seeds. Int J Food Prop 18(11): 2380–2392. [CrossRef] [Google Scholar]
  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26(9-10): 1231–1237. [CrossRef] [PubMed] [Google Scholar]
  • Rosianski Y, Freiman ZE, Cochavi SM, Yablovitz Z, Kerem Z, Flaishman MA. 2016. Advanced analysis of developmental and ripening characteristics of pollinated common-type fig (Ficus carica L.). Scientia Horticulturae 198: 98–106. [Google Scholar]
  • Simopoulos AP. 2002. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother 56(8): 365–379. [Google Scholar]
  • Simopoulos A. 2016. An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity. Nutrients 8(3): 128. [CrossRef] [PubMed] [Google Scholar]
  • Slatnar A, Klancar U, Stampar F, Veberic R. 2011. Effect of drying of figs (Ficus carica L.) on the contents of sugars, organic acids, and phenolic compounds. J Agric Food Chem 59(21): 11696–11702. [CrossRef] [PubMed] [Google Scholar]
  • Solomon A, Golubowicz S, Yablowicz Z, et al. 2006. Antioxidant activities and anthocyanin content of fresh fruits of common fig (Ficus caricaL.). J Agric Food Chem 54(20): 7717–7723. [CrossRef] [PubMed] [Google Scholar]
  • Soong YY, Barlow PJ. 2004. Antioxidant activity and phenolic content of selected fruit seeds. Food Chem 88(3): 411–417. [Google Scholar]
  • Stanner SA, Hughes J, Kelly CNM, Buttriss J. 2004. A review of the epidemiological evidence for the “antioxidant hypothesis”. Public Health Nutr 7: 407–422. [CrossRef] [PubMed] [Google Scholar]
  • Talcott ST, Duncan CE, Del Pozo-Insfran D, Gorbet DW. 2005. Polyphenolic and antioxidant changes during storage of normal, mid, and high oleic acid peanuts. Food Chem 89(1): 77–84. [Google Scholar]
  • Taoufik F, Zine S, El Hadek M, et al. 2015. Oil content and main constituents of cactus seed oils Opuntia ficus Indica of different origin in Morocco. Med J Nutr Metab 8(2): 85–92. [Google Scholar]
  • Tsimidou M, Papadopoulos G, Boskou D. 1992. Determination of phenolic compounds in virgin olive oil by reversed-phase HPLC with emphasis on UV detection. Food Chem 44(1): 53–60. [Google Scholar]
  • Veberic R, Mikulic-Petkovsek M. 2016. Phytochemical composition of common fig (Ficus carica L.) Cultivars. Nutr Comp Fruit Cultivars 235–255. [Google Scholar]
  • Vemmos SN, Petri E, Stournaras V. 2013. Seasonal changes in photosynthetic activity and carbohydrate content in leaves and fruit of three fig cultivars (Ficus carica L.). Scientia Horticulturae 160: 198–207. [Google Scholar]
  • Velasco L, Goffman FD, Becker HC. 1998. Variability for the fatty acid composition of the seed oil in a germplasm collection of the genus Brassica. Genet Resour Crop Ev 45(4): 371–382. [CrossRef] [Google Scholar]
  • Vermaak I, Kamatou GPP, Komane-Mofokeng B, Viljoen AM, Beckett K. 2011. African seed oils of commercial importance-Cosmetic applications. S Afr J Bot 77(4): 920–933. [CrossRef] [Google Scholar]
  • Vosoughkia M, Hossainchi Ghareaghag L, Ghavami M, Gharachorloo M, Delkhosh B. 2012. Evaluation of oil content and fatty acid composition in seeds of different genotypes of safflower. Int J Agric Sci Res 2(1): 59–66. [Google Scholar]
  • Wu N, Fu K, Fu YJ, et al. 2009. Antioxidant activities of extracts and main components of pigeonpea [Cajanus cajan (L.) Millsp.] leaves. Molecules 14(3): 1032–1043. [CrossRef] [PubMed] [Google Scholar]
  • Yanty NAM, Lai OM, Osman A, Long K, Ghazali HM. 2008. Physicochemical properties of Cucumis melo Var. Inodorus (Honeydew Melon) seed and seed oil. J Food Lipids 15(1): 42–55. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.