Open Access
Volume 25, Numéro 4, July-August 2018
Numéro d'article D407
Nombre de pages 6
Section Lipids & Brain IV: Lipids in Alzheimer’s Disease / Lipids & Brain IV : les lipides dans la maladie d’Alzheimer
Publié en ligne 14 août 2018
  • Allinquant B, Clamagirand C, Potier MC. 2014. Role of cholesterol metabolism in the pathogenesis of Alzheimer’s disease. Curr Opin Clin Nutr Metab Care 17: 319–323. [CrossRef] [PubMed] [Google Scholar]
  • Andrew RJ, Fernandez CG, Stanley M, et al. 2017. Lack of BACE1 S-palmitoylation reduces amyloid burden and mitigates memory deficits in transgenic mouse models of Alzheimer’s disease. Proc Natl Acad Sci USA 114: E9665–E9674. [CrossRef] [Google Scholar]
  • Apostolova LG, Risacher SL, Duran T, et al. 2018. Associations of the top 20 Alzheimer disease risk variants with brain amyloidosis. JAMA Neurol 75: 328–341. [CrossRef] [PubMed] [Google Scholar]
  • Barbero-Camps E, Fernandez A, Martinez L, Fernandez-Checa JC, Colell A. 2013. APP/PS1 mice overexpressing SREBP-2 exhibit combined Abeta accumulation and tau pathology underlying Alzheimer’s disease. Hum Mol Genet 22: 3460–3476. [CrossRef] [PubMed] [Google Scholar]
  • Barrett PJ, Song Y, Van Horn WD, et al. 2012. The amyloid precursor protein has a flexible transmembrane domain and binds cholesterol. Science 336: 1168–1171. [CrossRef] [Google Scholar]
  • Ben Khalifa N, Tyteca D, Marinangeli C, et al. 2012. Structural features of the KPI domain control APP dimerization, trafficking, and processing. FASEB J 26: 855–867. [Google Scholar]
  • Bhattacharyya R, Barren C, Kovacs DM. 2013. Palmitoylation of amyloid precursor protein regulates amyloidogenic processing in lipid rafts. J Neurosci 33: 11169–11183. [CrossRef] [PubMed] [Google Scholar]
  • Bouillot C, Prochiantz A, Rougon G, Allinquant B. 1996. Axonal amyloid precursor protein expressed by neurons in vitro is present in a membrane fraction with caveolae-like properties. J Biol Chem 271: 7640–7644. [CrossRef] [PubMed] [Google Scholar]
  • Burg VK, Grimm HS, Rothhaar TL, et al. 2013. Plant sterols the better cholesterol in Alzheimer’s disease? A mechanistical study. J Neurosci 33: 16072–16087. [CrossRef] [PubMed] [Google Scholar]
  • Burlot MA, Braudeau J, Michaelsen-Preusse K, et al. 2015. Cholesterol 24-hydroxylase defect is implicated in memory impairments associated with Alzheimer-like Tau pathology. Hum Mol Genet 24: 5965–5976. [CrossRef] [PubMed] [Google Scholar]
  • Cataldo AM, Peterhoff CM, Troncoso JC, Gomez-Isla T, Hyman BT, Nixon RA. 2000. Endocytic pathway abnormalities precede amyloid beta deposition in sporadic Alzheimer’s disease and Down syndrome: differential effects of APOE genotype and presenilin mutations. Am J Pathol 157: 277–286. [CrossRef] [PubMed] [Google Scholar]
  • Cordy JM, Hussain I, Dingwall C, Hooper NM, Turner AJ. 2003. Exclusively targeting beta-secretase to lipid rafts by GPI-anchor addition up-regulates beta-site processing of the amyloid precursor protein. Proc Natl Acad Sci USA 100: 11735–11740. [CrossRef] [Google Scholar]
  • Cossec JC, Marquer C, Panchal M, Lazar AN, Duyckaerts C, Potier MC. 2010a. Cholesterol changes in Alzheimer’s disease: Methods of analysis and impact on the formation of enlarged endosomes. Biochim Biophys Acta 1801: 839–845. [Google Scholar]
  • Cossec JC, Simon A, Marquer C, et al. 2010b. Clathrin-dependent APP endocytosis and Abeta secretion are highly sensitive to the level of plasma membrane cholesterol. Biochim Biophys Acta 1801: 846–852. [CrossRef] [PubMed] [Google Scholar]
  • Cutler RG, Kelly J, Storie K, et al. 2004. Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proc Natl Acad Sci USA 101: 2070–2075. [CrossRef] [Google Scholar]
  • Dai J, Buijs RM, Kamphorst W, Swaab DF. 2002. Impaired axonal transport of cortical neurons in Alzheimer’s disease is associated with neuropathological changes. Brain Res 948: 138–144. [Google Scholar]
  • De Strooper B, Annaert W. 2010. Novel research horizons for presenilins and gamma-secretases in cell biology and disease. Annu Rev Cell Dev Biol 26: 235–260. [CrossRef] [Google Scholar]
  • Decock M, El Haylani L, Stanga S, et al. 2015. Analysis by a highly sensitive split luciferase assay of the regions involved in APP dimerization and its impact on processing. FEBS Open Bio 5: 763–773. [Google Scholar]
  • Djelti F, Braudeau J, Hudry E, et al. 2015. CYP46A1 inhibition, brain cholesterol accumulation and neurodegeneration pave the way for Alzheimer’s disease. Brain 138: 2383–2398. [CrossRef] [PubMed] [Google Scholar]
  • Dubois B, Epelbaum S, Nyasse F, et al. 2018. Cognitive and neuroimaging features and brain beta-amyloidosis in individuals at risk of Alzheimer’s disease (INSIGHT-preAD): a longitudinal observational study. Lancet neurology 17: 335–346. [CrossRef] [Google Scholar]
  • Duyckaerts C, Delatour B, Potier MC. 2009. Classification and basic pathology of Alzheimer disease. Acta Neuropathol 118: 5–36. [CrossRef] [PubMed] [Google Scholar]
  • Fantini J, Di Scala C, Evans LS, Williamson PT, Barrantes FJ. 2016. A mirror code for protein-cholesterol interactions in the two leaflets of biological membranes. Sci Rep 6: 21907. [CrossRef] [PubMed] [Google Scholar]
  • Hudry E, Van Dam D, Kulik W, et al. 2010. Adeno-associated virus gene therapy with cholesterol 24-hydroxylase reduces the amyloid pathology before or after the onset of amyloid plaques in mouse models of Alzheimer’s disease. Mol Ther 18: 44–53. [CrossRef] [PubMed] [Google Scholar]
  • Kaden D, Munter LM, Joshi M, et al. 2008. Homophilic interactions of the amyloid precursor protein (APP) ectodomain are regulated by the loop region and affect {beta}-secretase cleavage of APP. J Biol Chem 283: 7271–7279. [CrossRef] [PubMed] [Google Scholar]
  • Kienlen-Campard P, Tasiaux B, Van Hees J, et al. 2008. Amyloidogenic processing but not amyloid precursor protein (APP) intracellular C-terminal domain production requires a precisely oriented APP dimer assembled by transmembrane GXXXG motifs. J Biol Chem 283: 7733–7744. [CrossRef] [PubMed] [Google Scholar]
  • Kotti TJ, Ramirez DM, Pfeiffer BE, Huber KM, Russell DW. 2006. Brain cholesterol turnover required for geranylgeraniol production and learning in mice. Proc Natl Acad Sci USA 103: 3869–3874. [CrossRef] [Google Scholar]
  • Lambert JC, Ibrahim-Verbaas CA, Harold D, et al. 2013. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet 45: 1452–1458. [CrossRef] [PubMed] [Google Scholar]
  • Lazar AN, Bich C, Panchal M, et al. 2012. Time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging reveals cholesterol overload in the cerebral cortex of Alzheimer disease patients. Acta Neuropathol 125: 133–144. [CrossRef] [PubMed] [Google Scholar]
  • Liu CC, Kanekiyo T, Xu H, Bu G. 2013. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol 9: 106–118. [CrossRef] [PubMed] [Google Scholar]
  • Loffler T, Flunkert S, Temmel M, Hutter-Paier B. 2016. Decreased plasma abeta in hyperlipidemic APPSL transgenic mice is associated with BBB dysfunction. Front Neurosci 10: 232. [CrossRef] [Google Scholar]
  • Lopez CA, de Vries AH, Marrink SJ. 2011. Molecular mechanism of cyclodextrin mediated cholesterol extraction. PLoS comput biol 7: e1002020. [Google Scholar]
  • Maioli S, Bavner A, Ali Z, et al. 2013. Is it possible to improve memory function by upregulation of the cholesterol 24S-hydroxylase (CYP46A1) in the brain? PLoS One 8: e68534. [Google Scholar]
  • Marquer C, Devauges V, Cossec JC, et al. 2011. Local cholesterol increase triggers amyloid precursor protein-Bace1 clustering in lipid rafts and rapid endocytosis. FASEB J 25: 1295–1305. [CrossRef] [PubMed] [Google Scholar]
  • Marquer C, Laine J, Dauphinot L, et al. 2014. Increasing membrane cholesterol of neurons in culture recapitulates Alzheimer’s disease early phenotypes. Mol neurodegener 9: 60. [CrossRef] [PubMed] [Google Scholar]
  • Marquer C, Leveque-Fort S, Potier MC. 2012. Determination of lipid raft partitioning of fluorescently-tagged probes in living cells by fluorescence correlation spectroscopy (FCS). J Vis Exp 62: e3513. [Google Scholar]
  • Matsumura N, Takami M, Okochi M, et al. 2014. Gamma-Secretase associated with lipid rafts: multiple interactive pathways in the stepwise processing of beta-carboxyl-terminal fragment. J Biol Chem 289: 5109–5121. [CrossRef] [PubMed] [Google Scholar]
  • Mayeux R, Stern Y, Ottman R, et al. 1993. The apolipoprotein epsilon 4 allele in patients with Alzheimer’s disease. Ann Neurol 34: 752–754. [CrossRef] [PubMed] [Google Scholar]
  • Nadezhdin KD, Bocharova OV, Bocharov EV, Arseniev AS. 2012. Dimeric structure of transmembrane domain of amyloid precursor protein in micellar environment. FEBS Lett 586: 1687–1692. [CrossRef] [PubMed] [Google Scholar]
  • Nierzwicki L, Czub J. 2015. Specific binding of cholesterol to the amyloid precursor protein: structure of the complex and driving forces characterized in molecular detail. J Phys Chem Lett 6: 784–790. [CrossRef] [PubMed] [Google Scholar]
  • Panahi A, Bandara A, Pantelopulos GA, Dominguez L, Straub, JE. 2016. Specific binding of cholesterol to C99 domain of amyloid precursor protein depends critically on charge state of protein. J Phys Chem Lett 7: 3535–3541. [CrossRef] [PubMed] [Google Scholar]
  • Panchal M, Loeper J, Cossec JC, et al. 2010. Enrichment of cholesterol in microdissected Alzheimer’s disease senile plaques as assessed by mass spectrometry. J Lipid Res 51: 598–605. [CrossRef] [PubMed] [Google Scholar]
  • Pillot T, Goethals M, Vanloo B, et al. 1996. Fusogenic properties of the C-terminal domain of the Alzheimer beta-amyloid peptide. J Biol Chem 271: 28757–28765. [CrossRef] [PubMed] [Google Scholar]
  • Selkoe DJ, Hardy J. 2016. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO mol med 8: 595–608. [Google Scholar]
  • Shobab LA, Hsiung GY, Feldman HH. 2005. Cholesterol in Alzheimer’s disease. Lancet neurology 4: 841–852. [CrossRef] [PubMed] [Google Scholar]
  • Simons K, Gerl MJ. 2010. Revitalizing membrane rafts: new tools and insights. Nat Rev Mol Cell Biol 11: 688–699. [Google Scholar]
  • Simons K, Toomre D. 2000. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1: 31–39. [CrossRef] [PubMed] [Google Scholar]
  • Song Y, Hustedt EJ, Brandon S, Sanders CR. 2013. Competition between homodimerization and cholesterol binding to the C99 domain of the amyloid precursor protein. Biochemistry 52: 5051–5064. [CrossRef] [PubMed] [Google Scholar]
  • Sun F, Chen L, Wei P, et al. 2017. Dimerization and structural stability of amyloid precursor proteins affected by the membrane microenvironments. J Chem Inf Model 57: 1375–1387. [CrossRef] [PubMed] [Google Scholar]
  • Tang TC, Hu Y, Kienlen-Campard P, et al. 2014. Conformational changes induced by the A21G Flemish mutation in the amyloid precursor protein lead to increased Abeta production. Structure 22: 387–396. [CrossRef] [PubMed] [Google Scholar]
  • Vetrivel KS, Meckler X, Chen Y, et al. 2009. Alzheimer disease Abeta production in the absence of S-palmitoylation-dependent targeting of BACE1 to lipid rafts. J Biol Chem 284: 3793–3803. [CrossRef] [PubMed] [Google Scholar]
  • Xiong H, Callaghan D, Jones A, et al. 2008. Cholesterol retention in Alzheimer’s brain is responsible for high beta- and gamma-secretase activities and A beta production. Neurobiol Dis 29: 422–437. [CrossRef] [PubMed] [Google Scholar]
  • Yao ZX, Papadopoulos V. 2002. Function of beta-amyloid in cholesterol transport: a lead to neurotoxicity. Faseb J 16: 1677–1679. [CrossRef] [PubMed] [Google Scholar]
  • Yasar S, Whitmer R. 2018. Statin use and risk of Alzheimer disease: A new view on an old relationship. Neurology 90: 103–104. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.