Open Access
Numéro
OCL
Volume 25, Numéro 4, July-August 2018
Numéro d'article D408
Nombre de pages 7
Section Lipids & Brain IV: Lipids in Alzheimer’s Disease / Lipids & Brain IV : les lipides dans la maladie d’Alzheimer
DOI https://doi.org/10.1051/ocl/2018024
Publié en ligne 30 mars 2018
  • Ammar MR, Humeau Y, Hanauer A, Nieswandt B, Bader MF, Vitale N. 2013a. The Coffin-Lowry syndrome-associated protein RSK2 regulates neuritis outgrowth through phosphorylation of phospholipase D1 (PLD1) and synthesis of phosphatidic acid. J Neurosci 33(50): 19470–19479. [CrossRef] [PubMed] [Google Scholar]
  • Ammar MR, Kassas N, Chasserot-Golaz S, Bader MF, Vitale N. 2013b. Lipids in regulated Eexocytosis: what are they doing? Front Endocrinol (Lausanne) 4: 125. [PubMed] [Google Scholar]
  • Ammar MR, Kassas N, Bader MF, Vitale N. 2014. Phosphatidic acid in neuronal development: a node for membrane and cytoskeleton rearrangements. Biochimie 107: 51–57. DOI: 10.1016/j.biochi.2014.07.026. [CrossRef] [PubMed] [Google Scholar]
  • Ammar MR, Thahouly T, Hanauer A, Stegner D, Nieswandt B, Vitale N. 2015. PLD1 participates in BDNF-induced signalling in cortical neurons. Sci Rep 5: 14778. [CrossRef] [PubMed] [Google Scholar]
  • Bader MF, Vitale N. 2009. Phospholipase D in calcium-regulated exocytosis: lessons from chromaffin cells. Biochim Biophys Acta 1791(9): 936–941. [CrossRef] [PubMed] [Google Scholar]
  • Bader MF, Holz RW, Kumakura K, Vitale N. 2002. Exocytosis: the chromaffin cell as a model system. Ann N Y Acad Sci 971: 178–83. [CrossRef] [PubMed] [Google Scholar]
  • Béglé A, Tryoen-Tóth P, de Barry J, Bader MF, Vitale N. 2009. ARF6 regulates the synthesis of fusogenic lipids for calcium-regulated exocytosis in neuroendocrine cells. J Biol Chem 284(8): 4836–4845. [CrossRef] [PubMed] [Google Scholar]
  • Bullen HE, Jia Y, Yamaryo-Botté Y, et al. 2016. Phosphatidic acid-mediated signaling regulates microneme secretion in toxoplasma. Cell Host Microbe 19(3): 349–360. [CrossRef] [PubMed] [Google Scholar]
  • Cardoso C, Afonso C, Bandarra NM. 2016. Dietary DHA and health: cognitive function ageing. Nutr Res Rev 29(2): 281–294. [CrossRef] [PubMed] [Google Scholar]
  • Caumont AS, Galas MC, Vitale N, Aunis D, Bader MF. 1998. Regulated exocytosis in chromaffin cells. Translocation of ARF6 stimulates a plasma membrane-associated phospholipase D. J Biol Chem 273(3): 1373–1379. [CrossRef] [PubMed] [Google Scholar]
  • Disse J, Vitale N, Bader MF, Gerke V. 2009. Phospholipase D1 is specifically required for regulated secretion of von Willebrand factor from endothelial cells. Blood 113(4): 973–980. [CrossRef] [Google Scholar]
  • Dotti CG, Sullivan CA, Banker GA. 1988. The establishment of polarity by hippocampal neurons in culture. J Neurosci 8(4): 1454–1468. [CrossRef] [PubMed] [Google Scholar]
  • Eto M, Shindou H, Shimizu T. 2014. A novel lysophosphatidic acid acyltransferase enzyme (LPAAT4) with a possible role for incorporating docosahexaenoic acid into brain glycerophospholipids. Biochem Biophys Res Commun 443(2): 718–724. [CrossRef] [Google Scholar]
  • Gasman S, Vitale N. 2017 Lipid remodelling in neuroendocrine secretion. Biol Cell 109(11): 381–390. [CrossRef] [PubMed] [Google Scholar]
  • Haast RA, Kiliaan AJ. 2015. Impact of fatty acids on brain circulation, structure and function. Prostaglandins Leukot Essent Fatty Acids 92: 3–14. [CrossRef] [PubMed] [Google Scholar]
  • He CX, Portera-Cailliau C. 2013. The trouble with spines in fragile X syndrome: density, maturity and plasticity. Neuroscience 251: 120–128. [CrossRef] [PubMed] [Google Scholar]
  • Hozumi Y, Watanabe M, Otani K, Goto K. 2009. Diacylglycerol kinase beta promotes dendritic outgrowth and spine maturation in developing hippocampal neurons. BMC Neurosci 10: 99. [CrossRef] [PubMed] [Google Scholar]
  • Humeau Y, Vitale N, Chasserot-Golaz S, et al. 2001. A role for phospholipase D1 in neurotransmitter release. Proc Natl Acad Sci USA 98(26): 15300–15305. [CrossRef] [Google Scholar]
  • Humeau Y, Gambino F, Chelly J, Vitale N. 2009. X-linked mental retardation: focus on synaptic function and plasticity. J Neurochem 109(1): 1–14. [CrossRef] [Google Scholar]
  • Iversen L, Mathiasen S, Larsen JB, Stamou D. 2015. Membrane curvature bends the laws of physics and chemistry. Nat Chem Biol 11(11): 822–825. [CrossRef] [Google Scholar]
  • Jenkins GM, Frohman MA. 2005. Phospholipase D: a lipid centric review. Cell Mol Life Sci 62(19-20): 2305–2316. [CrossRef] [PubMed] [Google Scholar]
  • Kanaho Y, Funakoshi Y, Hasegawa H. 2009. Phospholipase D signalling and its involvement in neurite outgrowth. Biochim Biophys Acta 1791(9): 898–904. [CrossRef] [PubMed] [Google Scholar]
  • Kassas N, Tanguy E, Thahouly T, et al. 2017. Comparative characterization of phosphatidic acid sensors and their localization during frustrated phagocytosis. J Biol Chem 292(10): 4266–4279. [CrossRef] [PubMed] [Google Scholar]
  • Kim K, Yang J, Zhong XP, et al. 2009. Synaptic removal of diacylglycerol by DGKzeta and PSD-95 regulates dendritic spine maintenance. EMBO J 28(8): 1170–1179. [CrossRef] [PubMed] [Google Scholar]
  • Kim K, Yang J, Kim E. 2010. Diacylglycerol kinases in the regulation of dendritic spines. J Neurochem 112(3): 577–587. [CrossRef] [PubMed] [Google Scholar]
  • Lalli G, Hall A. 2005. Ral GTPases regulate neurite branching through GAP-43 and the exocyst complex. J Cell Biol 171(5): 857–869. [CrossRef] [PubMed] [Google Scholar]
  • Lam IP, Siu FK, Chu JY, Chow BK. 2008. Multiple actions of secretin in the human body. Int Rev Cytol 265: 159–190. [CrossRef] [PubMed] [Google Scholar]
  • Lopez JA, Brennan AJ, Whisstock JC, Voskoboinik I, Trapani JA. 2012. Protecting a serial killer: pathways for perforin trafficking and self-defence ensure sequential target cell death. Trends Immunol 33(8): 406–412. [CrossRef] [PubMed] [Google Scholar]
  • Martinez-Arca S, Alberts P, Zahraoui A, et al. 2000. Role of tetanus neurotoxin insensitive vesicle-associated membrane protein (TI-VAMP) in vesicular transport mediating neurite outgrowth. J Cell Biol 149(4): 889–900. [CrossRef] [PubMed] [Google Scholar]
  • Oliveira TG, Chan RB, Tian H, et al. 2010. Phospholipase d2 ablation ameliorates Alzheimer’s disease-linked synaptic dysfunction and cognitive deficits. J Neurosci 30(49): 16419–16428. [CrossRef] [PubMed] [Google Scholar]
  • Shirai Y, Kouzuki T, Kakefuda K, et al. 2010. Essential role of neuron-enriched diacylglycerol kinase (DGK), DGKbeta in neurite spine formation, contributing to cognitive function. PLoS One 5(7): e11602. [CrossRef] [PubMed] [Google Scholar]
  • Sytnyk V, Leshchyns’ka I, Schachner M. 2017. Neural cell adhesion molecules of the immunoglobulin superfamily regulate synapse formation, maintenance, and function. trends. Neurosci 40(5): 295–308. [Google Scholar]
  • Tabet R, Moutin E, Becker JA, et al. 2016a. Fragile X mental retardation protein (FMRP) controls diacylglycerol kinase activity in neurons. Proc Natl Acad Sci USA 113(26): E3619–3628. [CrossRef] [Google Scholar]
  • Tabet R, Vitale N, Moine H. 2016b. Fragile X syndrome: are signaling lipids the missing culprits? Biochimie 130: 188–194. [CrossRef] [PubMed] [Google Scholar]
  • Tanguy E, Carmon O, Wang Q, Jeandel L, Chasserot-Golaz S, Montero-Hadjadje M, Vitale N. 2016. Lipids implicated in the journey of a secretory granule: from biogenesis to fusion. J Neurochem 137(6): 904–912. [CrossRef] [PubMed] [Google Scholar]
  • Tanguy E, Wang Q, Vitale N. 2018. Role of phospholipase D-derived phosphatidic acid in regulated exocytosis and neurological disease. Handb Exp Pharmacol. (in press). [Google Scholar]
  • Tolias KF, Couvillon AD, Cantley LC, Carpenter CL. 1998. Characterization of a Rac1-and RhoGDI-associated lipid kinase signaling complex. Mol Cell Biol 18(2): 76270. [CrossRef] [Google Scholar]
  • Vitale N. 2010. Synthesis of fusogenic lipids through activation of phospholipase D1 by GTPases and the kinase RSK2 is required for calcium-regulated exocytosis in neuroendocrine cells. Biochem Soc Trans 38(1): 167–171. [CrossRef] [PubMed] [Google Scholar]
  • Vitale N, Caumont AS, Chasserot-Golaz S, et al. 2001. Phospholipase D1: a key factor for the exocytotic machinery in neuroendocrine cells. EMBO J 20(10): 2424–2434. [CrossRef] [PubMed] [Google Scholar]
  • Vitale N, Chasserot-Golaz S, Bader MF. 2002. Regulated secretion in chromaffin cells: an essential role for ARF6-regulated phospholipase D in the late stages of exocytosis. Ann N Y Acad Sci 971: 193–200. [CrossRef] [PubMed] [Google Scholar]
  • Waselle L, Gerona RR, Vitale N, Martin TF, Bader MF, Regazzi R. 2005. Role of phosphoinositide signaling in the control of insulin exocytosis. Mol Endocrinol 19(12): 3097–3106. [CrossRef] [PubMed] [Google Scholar]
  • Williams JM, Pettitt TR, Powell W, et al. 2007. Antineutrophil cytoplasm antibody-stimulated neutrophil adhesion depends on diacylglycerol kinase-catalyzed phosphatidic acid formation. J Am Soc Nephrol 18(4): 1112–1120 [CrossRef] [Google Scholar]
  • Zeniou-Meyer M, Zabari N, Ashery U, et al. 2007. Phospholipase D1 production of phosphatidic acid at the plasma membrane promotes exocytosis of large dense-core granules at a late stage. J Biol Chem 282(30): 21746–21757. [CrossRef] [PubMed] [Google Scholar]
  • Zeniou-Meyer M, Liu Y, Béglé A, et al. 2008. The Coffin-Lowry syndrome-associated protein RSK2 is implicated in calcium-regulated exocytosis through the regulation of PLD1. Proc Natl Acad Sci USA 105(24): 8434–8439. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.