Open Access
Volume 25, Numéro 4, July-August 2018
Numéro d'article D406
Nombre de pages 8
Section Lipids & Brain IV: Lipids in Alzheimer’s Disease / Lipids & Brain IV : les lipides dans la maladie d’Alzheimer
Publié en ligne 2 juillet 2018
  • Adam O, Tesche A, Wolfram G. 2008. Impact of linoleic acid intake on arachidonic acid formation and eicosanoid biosynthesis in humans. Prostaglandins Leukot Essent Fatty Acids 79: 177–181. [CrossRef] [PubMed] [Google Scholar]
  • Amtul Z, Uhrig M, Wang L, Rozmahel RF, Beyreuther K. 2012. Detrimental effects of arachidonic acid and its metabolites in cellular and mouse models of Alzheimer’s disease: structural insight. Neurobiol Aging 33: 831.e21–831.e31. [CrossRef] [Google Scholar]
  • Ardura-Fabregat A, Boddeke EWGM, Boza-Serrano A, et al. 2017. Targeting neuroinflammation to treat Alzheimer’s disease. CNS Drugs 31: 1057–1082. [CrossRef] [PubMed] [Google Scholar]
  • Arnoldussen IA, Zerbi V, Wiesmann M, et al. 2016. Early intake of long-chain polyunsaturated fatty acids preserves brain structure and function in diet-induced obesity. J Nutr Biochem 30: 177–188. [CrossRef] [PubMed] [Google Scholar]
  • Berrios GE. 1990. Alzheimer’s disease: a conceptual history. Int J Ger Psychiatry 5: 355–365. [CrossRef] [Google Scholar]
  • Cheng L, Yu Y, Zhang Q, Szabo A, Wang H, Huang XF. 2015. Arachidonic acid impairs hypothalamic leptin signaling and hepatic energy homeostasis in mice. Mol Cell Endocrinol 412: 12–18. [CrossRef] [PubMed] [Google Scholar]
  • Chong FP, Ng KY, Koh RY, Chye SM. 2018. Tau proteins and tauopathies in Alzheimer’s disease. Cell Mol Neurobiol, in press. [Google Scholar]
  • Desbène C, Malaplate-Armand C, Youssef I, et al. 2012. Critical role of cPLA2 in Aβ oligomer-induced neurodegeneration and memory deficit. Neurobiol Aging 33: 1123.e17–1123.e29. [Google Scholar]
  • Diau GY, Hsieh AT, Sarkadi-Nagy EA, Wijendran V, Nathanielsz PW, Brenna JT. 2005. The influence of long chain polyunsaturated fatty acid supplementation on docosahexaenoic acid and arachidonic acid in baboon neonate central nervous system. BMC Med 3: 11. [CrossRef] [PubMed] [Google Scholar]
  • European Food Safety Authority. 2009. Scientific opinion: labelling reference intake values for n-3 and n-6 polyunsaturated fatty acids. EFSA J 1176: 1–11. [Google Scholar]
  • FAO/WHO. 2008. Interim summary of conclusions and dietary recommendations on total fat & fatty acids, in expert consultation on fats and fatty acids in human. Geneva, pp. 10–14. [Google Scholar]
  • Ghebremeskel K, Crawford MA, Lowy C, et al. 2000. Arachidonic and docosahexaenoic acids are strongly associated in maternal and neonatal blood. Eur J Clin Nutr 54: 50–56. [CrossRef] [PubMed] [Google Scholar]
  • Gong CX, Lidsky T, Wegiel J, Zuck L, Grundke-Iqbal I, Iqbal K. 2000. Phosphorylation of microtubule-associated protein tau is regulated by protein phosphatase 2A in mammalian brain. Implications for neurofibrillary degeneration in Alzheimer’s disease. J Biol Chem 275: 5535–5544. [CrossRef] [PubMed] [Google Scholar]
  • Gong Y, Chang L, Viola KL, et al. 2003. Alzheimer’s disease-affected brain: presence of oligomeric A beta ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proc Natl Acad Sci U S A 100: 10417–10422. [CrossRef] [PubMed] [Google Scholar]
  • Griciuc A, Serrano-Pozo A, Parrado AR, et al. 2013. Alzheimer’s disease risk gene CD33 inhibits microglial uptake of amyloid beta. Neuron 78: 631–643. [CrossRef] [PubMed] [Google Scholar]
  • Guerreiro R, Wojtas A, Bras J, 2013. et al. TREM2 variants in Alzheimer’s disease. N Engl J Med 368: 117–127. [CrossRef] [PubMed] [Google Scholar]
  • Harauma A, Tomita M, Muto D, Moriguchi T. 2015. Effect of long-term administration of arachidonic acid on n-3 fatty acid deficient mice. Prostaglandins Leukot Essent Fatty Acids 95: 41–45. [CrossRef] [PubMed] [Google Scholar]
  • Harauma A, Yasuda H, Hatanaka E, Nakamura MT, Salem N Jr, Moriguchi T. 2017. The essentiality of arachidonic acid in addition to docosahexaenoic acid for brain growth and function. Prostaglandins Leukot Essent Fatty Acids 116: 9–18. [CrossRef] [PubMed] [Google Scholar]
  • Hatanaka E, Harauma A, Yasuda H, et al. 2016. Essentiality of arachidonic acid intake in murine early development. Prostaglandins Leukot Essent Fatty Acids 108: 51–57. [CrossRef] [PubMed] [Google Scholar]
  • Holmes C, Cunningham C, Zotova E, et al. 2009. Systemic inflammation and disease progression in Alzheimer disease. Neurology 73: 768–774. [CrossRef] [PubMed] [Google Scholar]
  • Hosono T, Mouri A, Nishitsuji K, et al. 2015a. Arachidonic or docosahexaenoic acid diet prevents memory impairment in Tg2576 Mice. J Alzheimers Dis 48: 149–162. [CrossRef] [PubMed] [Google Scholar]
  • Hosono T, Nishitsuji K, Nakamura T, et al. 2015b. Arachidonic acid diet attenuates brain Aβ deposition in Tg2576 mice. Brain Res 1613: 92–99. [CrossRef] [PubMed] [Google Scholar]
  • INCA 2. Étude Individuelle Nationale sur les Consommations Alimentaires. 2006–2007. [Google Scholar]
  • Iqbal K, Alonso AC, Gong CX, Khatoon S, Singh TJ, Grundke-Iqbal I. 1994. Mechanism of neurofibrillary degeneration in Alzheimer’s disease. Mol Neurobiol 9: 119–123. [CrossRef] [PubMed] [Google Scholar]
  • Jiang C, Li G, Huang P, Liu Z, Zhao B. 2017. The Gut Microbiota and Alzheimer’s Disease. J Alzheimers Dis 58: 1–15. [CrossRef] [PubMed] [Google Scholar]
  • Jonnalagadda SS, Egan SK, Heimbach JT, Harris SS, Kris-Etherton PM. 1995. Fatty acid consumption paterns of Americans: 1987–1988 SDA Nationwide Food Consumption Survey. Nutr Res 15: 1767–1781. [CrossRef] [Google Scholar]
  • Kelley DS, Taylor PC, Nelson GJ, Schmidt PC, Mackey BE, Kyle D. 1997. Effects of dietary arachidonic acid on human immune response. Lipids 32: 449–456. [CrossRef] [PubMed] [Google Scholar]
  • Kiyohara R, Yamaguchi S, Rikimaru K, Takahashi H. 2011. Supplemental arachidonic acid-enriched oil improves the taste of thigh meat of Hinai-jidori chickens. Poult Sci 90: 1817–1822. [CrossRef] [PubMed] [Google Scholar]
  • Knoch B, Barnett MP, McNabb WC, et al. 2010. Dietary arachidonic acid-mediated effects on colon inflammation using transcriptome analysis. Mol Nutr Food Res 54(Suppl. 1): S62–S74. [CrossRef] [PubMed] [Google Scholar]
  • Kotani S, Nakazawa H, Tokimasa T, et al. 2003. Synaptic plasticity preserved with arachidonic acid diet in aged rats. Neurosci Res 46: 453–461. [CrossRef] [Google Scholar]
  • Kriem B, Sponne I, Fifre A, et al. 2005. Cytosolic phospholipase A2 mediates neuronal apoptosis induced by soluble oligomers of the amyloid-beta peptide. FASEB J 19: 85–87. [CrossRef] [PubMed] [Google Scholar]
  • Kuriki K, Nagaa T, Imaeda N, et al. 2002. Discrepancies in dietary intakes and plasma concentrations of fatty acids according to age among Japanese female dietitians. Eur J Clin 56: 524–531. [CrossRef] [Google Scholar]
  • Lacor PN, Buniel MC, Furlow PW, et al. 2007. Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J Neurosci 27: 796–807. [CrossRef] [PubMed] [Google Scholar]
  • Lauritzen L, Fewtrell M, Agostoni C. 2015. Dietary arachidonic acid in perinatal nutrition: a commentary. Pediatr Res 77: 263–269. [CrossRef] [PubMed] [Google Scholar]
  • Lebouvier T, Pasquier F, Buée L. 2017. Update on tauopathies. Curr Opin Neurol 30: 589–598. [Google Scholar]
  • Li D, Ng A, Mann NJ, Sinclair AJ. 1998. Contribution of meat fat to dietary arachidonic acid. Lipids 33: 437–440. [CrossRef] [PubMed] [Google Scholar]
  • Liu S, Liu Y, Hao W, et al. 2012. TLR2 is a primary receptor for Alzheimer’s amyloid β peptide to trigger neuroinflammatory activation. J Immunol 188: 1098–1107. [CrossRef] [PubMed] [Google Scholar]
  • Lue L, Kuo YM, Roher AE, et al. 1999. Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer’s disease. Am J Pathol 155: 853–862. [CrossRef] [PubMed] [Google Scholar]
  • Mairet-Coello G, Courchet J, Pieraut S, et al. 2013. The CAMKK2-AMPK kinase pathway mediates the synaptotoxic effects of Aβ oligomers through Tau phosphorylation. Neuron 78: 94–108. [CrossRef] [PubMed] [Google Scholar]
  • Mann NJ, Johnson LG, Warrick GE, Sinclair AJ. 1995. The arachidonic acid content of the Australian diet is lower than previously estimated. J Nutr 125: 2528–2535. [PubMed] [Google Scholar]
  • McGahon B, Clements MP, Lynch MA. 1997. The ability of aged rats to sustain long-term potentiation is restored when the age-related decrease in membrane arachidonic acid concentration is reversed. Neuroscience 81: 9–16. [CrossRef] [PubMed] [Google Scholar]
  • McGahon B, Murray CA, Clements MP, Lynch MA. 1998. Analysis of the effect of membrane arachidonic acid concentration on modulation of glutamate release by interleukin-1: an age-related study. Exp Gerontol 33: 343–354. [CrossRef] [PubMed] [Google Scholar]
  • Miyake Y, Sasaki S, Tanaka K, et al. 2010. Dietary fat intake and risk of Parkinson’s disease: a case-control study in Japan. J Neurol Sci 288: 117–122. [CrossRef] [PubMed] [Google Scholar]
  • Nielsen OH, Ahnfelt-Rønne I, Elmgreen J. 1987. Abnormal metabolism of arachidonic acid in chronic inflammatory bowel disease: enhanced release of leucotriene B4 from activated neutrophils. Gut 28: 181–185. [CrossRef] [Google Scholar]
  • Nisbet RM, Polanco JC, Ittner LM, Götz J. 2015. Tau aggregation and its interplay with amyloid-β. Acta Neuropathol 129: 207–220. [CrossRef] [PubMed] [Google Scholar]
  • Nishizaki T, Nomura T, Matsuoka T, Tsujishita Y. 1992. Arachidonic acid as a messenger for the expression of long-term potentiation. Biochem Biophys Res Commun 254: 446–449. [CrossRef] [Google Scholar]
  • Okaichi Y, Ishikura Y, Akimoto K, et al. 2005. Arachidonic acid improves aged rats’ spatial cognition. Physiol Behav 84: 617–623. [CrossRef] [PubMed] [Google Scholar]
  • Pisani DF, Ghandour RA, Beranger GE, et al. 2014. The ω6-fatty acid, arachidonic acid, regulates the conversion of white to brite adipocyte through a prostaglandin/calcium mediated pathway. Mol Metab 3: 834–847. [CrossRef] [PubMed] [Google Scholar]
  • Ramakers JD, Mensink RP, Verstege MI, te Velde AA, Plat J. 2008. An arachidonic acid-enriched diet does not result in more colonic inflammation as compared with fish oil- or oleic acid-enriched diets in mice with experimental colitis. Br J Nutr 100: 347–554. [CrossRef] [PubMed] [Google Scholar]
  • Rickman C, Davletov B. 2005. Arachidonic acid allows SNARE complex formation in the presence of Munc18. Chem Biol 12: 545–553. [CrossRef] [PubMed] [Google Scholar]
  • Rodriguez-Navas C, Morselli E, Clegg DJ. 2016. Sexually dimorphic brain fatty acid composition in low and high fat diet-fed mice. Mol Metab 5: 680–689. [CrossRef] [PubMed] [Google Scholar]
  • Sanchez-Mejia RO, Newman JW, Toh S, et al. 2008. Phospholipase A2 reduction ameliorates cognitive deficits in a mouse model of Alzheimer’s disease. Nat Neurosci 11: 1311–1318. [CrossRef] [PubMed] [Google Scholar]
  • Seah JY, Gay GM, Su J, et al. 2017. Consumption of red meat, but not cooking oils high in polyunsaturated fat, is associated with higher arachidonic acid status in Singapore Chinese adults. Nutrients 9. pii: E101. [Google Scholar]
  • Shankar GM, Li S, Mehta TH, et al. 2008. Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 14: 837–842. [CrossRef] [PubMed] [Google Scholar]
  • Silverman W, Wisniewski HM, Bobinski M, Wegiel J. 1997. Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol Aging 18: 389–392. [CrossRef] [Google Scholar]
  • Stewart CR, Stuart LM, Wilkinson K, et al. 2010. CD36 ligands promote sterile inflammation through assembly of a toll-like receptor 4 and 6 heterodimer. Nat Immunol 11: 155–161. [CrossRef] [PubMed] [Google Scholar]
  • Su HM, Corso TN, Nathanielsz PW, Brenna JT. 1999. Linoleic acid kinetics and conversion to arachidonic acid in the pregnant and fetal baboon. J Lipid Res 40: 1304–1312. [PubMed] [Google Scholar]
  • Suitor K, Payne GW, Sarr O, et al. 2017. Arachidonic acid promote white adipose tissue inflammation in Fads2−/− mice fed low fat diets. Prostaglandins Leukot Essent Fatty Acids 126: 84–91. [CrossRef] [PubMed] [Google Scholar]
  • Taber L, Chiu CH, Whelan J. 1998. Assessment of the arachidonic acid content in foods commonly consumed in the American diet. Lipids 33: 1151–1157. [CrossRef] [PubMed] [Google Scholar]
  • Takahashi H, Rikimaru K, Kiyohara R, Yamaguchi S. 2012. Effect of arachidonic acid-enriched oil diet supplementation on the taste of broiler meat. Asian-Australas J Anim Sci 25: 845–851. [CrossRef] [Google Scholar]
  • Thomas MH, Paris C, Magnien M, et al. 2017. Dietary arachidonic acid increases deleterious effects of amyloid-β oligomers on learning abilities and expression of AMPA receptors: putative role of the ACSL4-cPLA2 balance. Alzheimers Res Ther 9: 69. [CrossRef] [PubMed] [Google Scholar]
  • Tokuda H, Kontani M, Kawashima H, Kiso Y, Shibata H, Osumi N. 2014. Differential effect of arachidonic acid and docosahexaenoic acid on age-related decreases in hippocampal neurogenesis. Neurosci Res 88: 58–66. [CrossRef] [Google Scholar]
  • Tokudome Y, Imaeda N, Ikeda M, Kitagawa I, Fujiwara N, Tokudome S. 1999. Foods contributing to absolute intake and variance in intake of fat, fatty acids, and cholesterol in middle-aged Japanese. J Epidemiol 9: 78–90. [CrossRef] [PubMed] [Google Scholar]
  • USDA nutrient intakes from food: mean amounts consumed per individual, by gender and age. 2012. What we eat in America, NHANES 2009–2010. USDA, Agricultural Research Service. [Google Scholar]
  • Vassar R, Bennett BD, Babu-Khan S, et al. 1999. Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286: 735–741. [CrossRef] [PubMed] [Google Scholar]
  • Vossel KA, Zhang K, Brodbeck J, et al. 2010. Tau reduction prevents Abeta-induced defects in axonal transport. Science 330: 198. [CrossRef] [Google Scholar]
  • Walter S, Letiembre M, Liu Y, et al. 2007. Role of the toll-like receptor 4 in neuroinflammation in Alzheimer’s disease. Cell Physiol Biochem 20: 947–956. [CrossRef] [PubMed] [Google Scholar]
  • Whelan J, Li B, Birdwell C. 1997. Dietary arachidonic acid increases eicosanoid production in the presence of equal amounts of dietary eicosapentaenoic acid. Adv Exp Med Biol 400B: 897–904. [PubMed] [Google Scholar]
  • Whelan J, Surette ME, Hardardóttir I, et al. 1993. Dietary arachidonate enhances tissue arachidonate levels and eicosanoid production in Syrian hamsters. J Nutr 123: 2174–2185. [PubMed] [Google Scholar]
  • Wielinga PY, Harthoorn LF, Verschuren L, et al. 2012. Arachidonic acid/docosahexaenoic acid-supplemented diet in early life reduces body weight gain, plasma lipids, and adiposity in later life in ApoE*3Leiden mice. Mol Nutr Food Res 56: 1081–1089. [CrossRef] [PubMed] [Google Scholar]
  • Youssef I, Florent-Béchard S, Malaplate-Armand C, et al. 2008. N-truncated amyloid-beta oligomers induce learning impairment and neuronal apoptosis. Neurobiol Aging 29: 1319–1333. [CrossRef] [PubMed] [Google Scholar]
  • Zhao J, Del Bigio MR, Weiler HA. 2011. Maternal arachidonic acid supplementation improves neurodevelopment in young adult offspring from rat dams with and without diabetes. Prostaglandins Leukot Essent Fatty Acids 84: 63–70. [CrossRef] [PubMed] [Google Scholar]
  • Zhuang P, Shou Q, Lu Y, et al. 2017. Arachidonic acid sex-dependently affects obesity through linking gut microbiota-driven inflammation to hypothalamus-adipose-liver axis. Biochim Biophys Acta 1863: 2715–2726. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.