Open Access
Volume 25, Number 4, July-August 2018
Article Number D407
Number of page(s) 6
Section Lipids & Brain IV: Lipids in Alzheimer’s Disease / Lipids & Brain IV : les lipides dans la maladie d’Alzheimer
Published online 14 August 2018
  • Allinquant B, Clamagirand C, Potier MC. 2014. Role of cholesterol metabolism in the pathogenesis of Alzheimer’s disease. Curr Opin Clin Nutr Metab Care 17: 319–323. [CrossRef] [PubMed] [Google Scholar]
  • Andrew RJ, Fernandez CG, Stanley M, et al. 2017. Lack of BACE1 S-palmitoylation reduces amyloid burden and mitigates memory deficits in transgenic mouse models of Alzheimer’s disease. Proc Natl Acad Sci USA 114: E9665–E9674. [CrossRef] [Google Scholar]
  • Apostolova LG, Risacher SL, Duran T, et al. 2018. Associations of the top 20 Alzheimer disease risk variants with brain amyloidosis. JAMA Neurol 75: 328–341. [CrossRef] [PubMed] [Google Scholar]
  • Barbero-Camps E, Fernandez A, Martinez L, Fernandez-Checa JC, Colell A. 2013. APP/PS1 mice overexpressing SREBP-2 exhibit combined Abeta accumulation and tau pathology underlying Alzheimer’s disease. Hum Mol Genet 22: 3460–3476. [CrossRef] [PubMed] [Google Scholar]
  • Barrett PJ, Song Y, Van Horn WD, et al. 2012. The amyloid precursor protein has a flexible transmembrane domain and binds cholesterol. Science 336: 1168–1171. [CrossRef] [Google Scholar]
  • Ben Khalifa N, Tyteca D, Marinangeli C, et al. 2012. Structural features of the KPI domain control APP dimerization, trafficking, and processing. FASEB J 26: 855–867. [Google Scholar]
  • Bhattacharyya R, Barren C, Kovacs DM. 2013. Palmitoylation of amyloid precursor protein regulates amyloidogenic processing in lipid rafts. J Neurosci 33: 11169–11183. [CrossRef] [PubMed] [Google Scholar]
  • Bouillot C, Prochiantz A, Rougon G, Allinquant B. 1996. Axonal amyloid precursor protein expressed by neurons in vitro is present in a membrane fraction with caveolae-like properties. J Biol Chem 271: 7640–7644. [CrossRef] [PubMed] [Google Scholar]
  • Burg VK, Grimm HS, Rothhaar TL, et al. 2013. Plant sterols the better cholesterol in Alzheimer’s disease? A mechanistical study. J Neurosci 33: 16072–16087. [CrossRef] [PubMed] [Google Scholar]
  • Burlot MA, Braudeau J, Michaelsen-Preusse K, et al. 2015. Cholesterol 24-hydroxylase defect is implicated in memory impairments associated with Alzheimer-like Tau pathology. Hum Mol Genet 24: 5965–5976. [CrossRef] [PubMed] [Google Scholar]
  • Cataldo AM, Peterhoff CM, Troncoso JC, Gomez-Isla T, Hyman BT, Nixon RA. 2000. Endocytic pathway abnormalities precede amyloid beta deposition in sporadic Alzheimer’s disease and Down syndrome: differential effects of APOE genotype and presenilin mutations. Am J Pathol 157: 277–286. [CrossRef] [PubMed] [Google Scholar]
  • Cordy JM, Hussain I, Dingwall C, Hooper NM, Turner AJ. 2003. Exclusively targeting beta-secretase to lipid rafts by GPI-anchor addition up-regulates beta-site processing of the amyloid precursor protein. Proc Natl Acad Sci USA 100: 11735–11740. [CrossRef] [Google Scholar]
  • Cossec JC, Marquer C, Panchal M, Lazar AN, Duyckaerts C, Potier MC. 2010a. Cholesterol changes in Alzheimer’s disease: Methods of analysis and impact on the formation of enlarged endosomes. Biochim Biophys Acta 1801: 839–845. [Google Scholar]
  • Cossec JC, Simon A, Marquer C, et al. 2010b. Clathrin-dependent APP endocytosis and Abeta secretion are highly sensitive to the level of plasma membrane cholesterol. Biochim Biophys Acta 1801: 846–852. [CrossRef] [PubMed] [Google Scholar]
  • Cutler RG, Kelly J, Storie K, et al. 2004. Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proc Natl Acad Sci USA 101: 2070–2075. [CrossRef] [Google Scholar]
  • Dai J, Buijs RM, Kamphorst W, Swaab DF. 2002. Impaired axonal transport of cortical neurons in Alzheimer’s disease is associated with neuropathological changes. Brain Res 948: 138–144. [Google Scholar]
  • De Strooper B, Annaert W. 2010. Novel research horizons for presenilins and gamma-secretases in cell biology and disease. Annu Rev Cell Dev Biol 26: 235–260. [CrossRef] [Google Scholar]
  • Decock M, El Haylani L, Stanga S, et al. 2015. Analysis by a highly sensitive split luciferase assay of the regions involved in APP dimerization and its impact on processing. FEBS Open Bio 5: 763–773. [Google Scholar]
  • Djelti F, Braudeau J, Hudry E, et al. 2015. CYP46A1 inhibition, brain cholesterol accumulation and neurodegeneration pave the way for Alzheimer’s disease. Brain 138: 2383–2398. [CrossRef] [PubMed] [Google Scholar]
  • Dubois B, Epelbaum S, Nyasse F, et al. 2018. Cognitive and neuroimaging features and brain beta-amyloidosis in individuals at risk of Alzheimer’s disease (INSIGHT-preAD): a longitudinal observational study. Lancet neurology 17: 335–346. [CrossRef] [Google Scholar]
  • Duyckaerts C, Delatour B, Potier MC. 2009. Classification and basic pathology of Alzheimer disease. Acta Neuropathol 118: 5–36. [CrossRef] [PubMed] [Google Scholar]
  • Fantini J, Di Scala C, Evans LS, Williamson PT, Barrantes FJ. 2016. A mirror code for protein-cholesterol interactions in the two leaflets of biological membranes. Sci Rep 6: 21907. [CrossRef] [PubMed] [Google Scholar]
  • Hudry E, Van Dam D, Kulik W, et al. 2010. Adeno-associated virus gene therapy with cholesterol 24-hydroxylase reduces the amyloid pathology before or after the onset of amyloid plaques in mouse models of Alzheimer’s disease. Mol Ther 18: 44–53. [CrossRef] [PubMed] [Google Scholar]
  • Kaden D, Munter LM, Joshi M, et al. 2008. Homophilic interactions of the amyloid precursor protein (APP) ectodomain are regulated by the loop region and affect {beta}-secretase cleavage of APP. J Biol Chem 283: 7271–7279. [CrossRef] [PubMed] [Google Scholar]
  • Kienlen-Campard P, Tasiaux B, Van Hees J, et al. 2008. Amyloidogenic processing but not amyloid precursor protein (APP) intracellular C-terminal domain production requires a precisely oriented APP dimer assembled by transmembrane GXXXG motifs. J Biol Chem 283: 7733–7744. [CrossRef] [PubMed] [Google Scholar]
  • Kotti TJ, Ramirez DM, Pfeiffer BE, Huber KM, Russell DW. 2006. Brain cholesterol turnover required for geranylgeraniol production and learning in mice. Proc Natl Acad Sci USA 103: 3869–3874. [CrossRef] [Google Scholar]
  • Lambert JC, Ibrahim-Verbaas CA, Harold D, et al. 2013. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet 45: 1452–1458. [CrossRef] [PubMed] [Google Scholar]
  • Lazar AN, Bich C, Panchal M, et al. 2012. Time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging reveals cholesterol overload in the cerebral cortex of Alzheimer disease patients. Acta Neuropathol 125: 133–144. [CrossRef] [PubMed] [Google Scholar]
  • Liu CC, Kanekiyo T, Xu H, Bu G. 2013. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol 9: 106–118. [CrossRef] [PubMed] [Google Scholar]
  • Loffler T, Flunkert S, Temmel M, Hutter-Paier B. 2016. Decreased plasma abeta in hyperlipidemic APPSL transgenic mice is associated with BBB dysfunction. Front Neurosci 10: 232. [CrossRef] [Google Scholar]
  • Lopez CA, de Vries AH, Marrink SJ. 2011. Molecular mechanism of cyclodextrin mediated cholesterol extraction. PLoS comput biol 7: e1002020. [Google Scholar]
  • Maioli S, Bavner A, Ali Z, et al. 2013. Is it possible to improve memory function by upregulation of the cholesterol 24S-hydroxylase (CYP46A1) in the brain? PLoS One 8: e68534. [Google Scholar]
  • Marquer C, Devauges V, Cossec JC, et al. 2011. Local cholesterol increase triggers amyloid precursor protein-Bace1 clustering in lipid rafts and rapid endocytosis. FASEB J 25: 1295–1305. [CrossRef] [PubMed] [Google Scholar]
  • Marquer C, Laine J, Dauphinot L, et al. 2014. Increasing membrane cholesterol of neurons in culture recapitulates Alzheimer’s disease early phenotypes. Mol neurodegener 9: 60. [CrossRef] [PubMed] [Google Scholar]
  • Marquer C, Leveque-Fort S, Potier MC. 2012. Determination of lipid raft partitioning of fluorescently-tagged probes in living cells by fluorescence correlation spectroscopy (FCS). J Vis Exp 62: e3513. [Google Scholar]
  • Matsumura N, Takami M, Okochi M, et al. 2014. Gamma-Secretase associated with lipid rafts: multiple interactive pathways in the stepwise processing of beta-carboxyl-terminal fragment. J Biol Chem 289: 5109–5121. [CrossRef] [PubMed] [Google Scholar]
  • Mayeux R, Stern Y, Ottman R, et al. 1993. The apolipoprotein epsilon 4 allele in patients with Alzheimer’s disease. Ann Neurol 34: 752–754. [CrossRef] [PubMed] [Google Scholar]
  • Nadezhdin KD, Bocharova OV, Bocharov EV, Arseniev AS. 2012. Dimeric structure of transmembrane domain of amyloid precursor protein in micellar environment. FEBS Lett 586: 1687–1692. [CrossRef] [PubMed] [Google Scholar]
  • Nierzwicki L, Czub J. 2015. Specific binding of cholesterol to the amyloid precursor protein: structure of the complex and driving forces characterized in molecular detail. J Phys Chem Lett 6: 784–790. [CrossRef] [PubMed] [Google Scholar]
  • Panahi A, Bandara A, Pantelopulos GA, Dominguez L, Straub, JE. 2016. Specific binding of cholesterol to C99 domain of amyloid precursor protein depends critically on charge state of protein. J Phys Chem Lett 7: 3535–3541. [CrossRef] [PubMed] [Google Scholar]
  • Panchal M, Loeper J, Cossec JC, et al. 2010. Enrichment of cholesterol in microdissected Alzheimer’s disease senile plaques as assessed by mass spectrometry. J Lipid Res 51: 598–605. [CrossRef] [PubMed] [Google Scholar]
  • Pillot T, Goethals M, Vanloo B, et al. 1996. Fusogenic properties of the C-terminal domain of the Alzheimer beta-amyloid peptide. J Biol Chem 271: 28757–28765. [CrossRef] [PubMed] [Google Scholar]
  • Selkoe DJ, Hardy J. 2016. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO mol med 8: 595–608. [Google Scholar]
  • Shobab LA, Hsiung GY, Feldman HH. 2005. Cholesterol in Alzheimer’s disease. Lancet neurology 4: 841–852. [CrossRef] [PubMed] [Google Scholar]
  • Simons K, Gerl MJ. 2010. Revitalizing membrane rafts: new tools and insights. Nat Rev Mol Cell Biol 11: 688–699. [Google Scholar]
  • Simons K, Toomre D. 2000. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1: 31–39. [CrossRef] [PubMed] [Google Scholar]
  • Song Y, Hustedt EJ, Brandon S, Sanders CR. 2013. Competition between homodimerization and cholesterol binding to the C99 domain of the amyloid precursor protein. Biochemistry 52: 5051–5064. [CrossRef] [PubMed] [Google Scholar]
  • Sun F, Chen L, Wei P, et al. 2017. Dimerization and structural stability of amyloid precursor proteins affected by the membrane microenvironments. J Chem Inf Model 57: 1375–1387. [CrossRef] [PubMed] [Google Scholar]
  • Tang TC, Hu Y, Kienlen-Campard P, et al. 2014. Conformational changes induced by the A21G Flemish mutation in the amyloid precursor protein lead to increased Abeta production. Structure 22: 387–396. [CrossRef] [PubMed] [Google Scholar]
  • Vetrivel KS, Meckler X, Chen Y, et al. 2009. Alzheimer disease Abeta production in the absence of S-palmitoylation-dependent targeting of BACE1 to lipid rafts. J Biol Chem 284: 3793–3803. [CrossRef] [PubMed] [Google Scholar]
  • Xiong H, Callaghan D, Jones A, et al. 2008. Cholesterol retention in Alzheimer’s brain is responsible for high beta- and gamma-secretase activities and A beta production. Neurobiol Dis 29: 422–437. [CrossRef] [PubMed] [Google Scholar]
  • Yao ZX, Papadopoulos V. 2002. Function of beta-amyloid in cholesterol transport: a lead to neurotoxicity. Faseb J 16: 1677–1679. [CrossRef] [PubMed] [Google Scholar]
  • Yasar S, Whitmer R. 2018. Statin use and risk of Alzheimer disease: A new view on an old relationship. Neurology 90: 103–104. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.