Dietary arachidonic acid: a Janus face actor in brain and Alzheimer’s disease?

Katleen Pinchaud¹, Katy Maguin-Gaté¹ and Jean-Luc Olivier¹,²,*

¹ Composés Alimentaires, Biofonctionnalités et NeurOTOxicité (CALBINOTOX, EA7488), Université de Lorraine, Faculté des Sciences et Technologies, Boulevard des Aiguillettes, 54506 Vandoeuvre-lès-Nancy, France
² Service de Biochimie-Biologie moléculaire, CHU de Nancy, 24 avenue du Mal de Lattre de Tassigny, CO n° 34, 54018 Nancy, France

Received 2 March 2018 – Accepted 28 May 2018

Abstract – Arachidonic acid is the second polyunsaturated fatty acid in brain and the first one belonging to the ω-6 series. Dietary intakes of arachidonic are between 50 and 300 mg/day in western diets but they might be underestimated. Triglycerides from fat would provide similar amounts than phospholipids of lean meat. Alzheimer’s disease is an age-associated degenerative disease and a critical health concern worldwide. Amyloid-β peptide oligomers are presently recognized as the main and earliest agents of Alzheimer’s disease although their neurotoxicity requires the presence of tau protein. We and others established that the arachidonic-acid-specific cytosolic phospholipase A₂ is critical for the amyloid-β peptide oligomer neurotoxicity. Then, we showed that an arachidonic acid-rich diet increases the mouse sensitivity to the amyloid-β peptide oligomer deleterious effect without major increase of arachidonic acid levels in brain. This suggests that dietary arachidonic acid can exert its effects in brain through peripheral modifications. Involvement of systemic sub-inflammation and gut-brain communications are discussed based on the recent literature. The various data suggest that dietary arachidonic acid should be taken into account in the design of preventive strategies against Alzheimer’s disease.

Keywords: arachidonic acid / inflammation / brain / diet / Alzheimer’s disease

Résumé – L’acide arachidonique alimentaire : un acteur à deux faces dans le cerveau et la maladie d’Alzheimer ? L’acide arachidonique est le second acide gras polyinsaturé cérébral et le premier de la série des ω-6. Les apports alimentaires d’acide arachidonique varient entre 50 et 300 mg/jour dans les régimes occidentaux mais pourraient être sous-estimés. Les triglycérides de la partie grasse des viandes fourniraient des quantités similaires aux phospholipides de la partie maigre. La maladie d’Alzheimer est une maladie neurodégénérative associée à l’âge et un problème de santé publique majeur dans le monde. Les oligomères de peptides β amyloïde en sont désormais reconnus comme l’agent principal, bien que la présence de la protéine tau est nécessaire à leur action. Avec d’autres auteurs, nous avons établi que la phospholipase A₂ cytosolique, spécifique de l’acide arachidonique, assure les effets neurotoxiques des oligomères de peptide β amyloïde. Nous avons ensuite montré qu’un régime riche en acide arachidonique augmente la sensibilité des souris aux effets de ces oligomères, sans augmentation majeure de ses niveaux cérébraux. Ceci suggère que cet acide gras peut agir sur le cerveau par des effets périphériques comme une sub-inflammation dont le rôle dans la relation intestin-cerveau est discutée dans la littérature. Les apports alimentaires d’acide arachidonique devrait être intégrés dans la prévention de la maladie d’Alzheimer.

Mots clés : acide arachidonique / inflammation / cerveau / régime alimentaire / maladie d’Alzheimer

*Correspondence: jean-luc.olivier@univ-lorraine.fr, jl.olivier@chru-nancy.fr

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD</td>
<td>Alzheimer’s disease</td>
</tr>
<tr>
<td>AICD</td>
<td>Activation-induced cell death</td>
</tr>
<tr>
<td>APP</td>
<td>Amyloid precursor protein</td>
</tr>
<tr>
<td>ARA</td>
<td>Arachidonic acid</td>
</tr>
<tr>
<td>Aβ peptide</td>
<td>Amyloid-beta peptide</td>
</tr>
<tr>
<td>BACE 1</td>
<td>Beta-secretase 1 precursor</td>
</tr>
<tr>
<td>CD33</td>
<td>Cluster of differentiation 33</td>
</tr>
<tr>
<td>CD36</td>
<td>Cluster of differentiation 36</td>
</tr>
<tr>
<td>cPLA2</td>
<td>Cytosolic phospholipase A2</td>
</tr>
<tr>
<td>DHA</td>
<td>Docosahexaenoic acid</td>
</tr>
<tr>
<td>GFAP</td>
<td>Glial fibrillary acidic protein</td>
</tr>
<tr>
<td>LDL</td>
<td>Low density lipoprotein</td>
</tr>
<tr>
<td>LNA</td>
<td>Linoleic acid</td>
</tr>
<tr>
<td>NFT</td>
<td>Neurofibrillary tangles</td>
</tr>
<tr>
<td>PSD95</td>
<td>Postsynaptic density protein 95</td>
</tr>
<tr>
<td>PUFAs</td>
<td>Polyunsaturated fatty acids</td>
</tr>
<tr>
<td>SNAP25</td>
<td>Synaptosomal-associated protein 25</td>
</tr>
<tr>
<td>SNARE</td>
<td>Soluble N-ethylmaleimide-sensitive-factor attachment protein receptor</td>
</tr>
<tr>
<td>TLR</td>
<td>Toll-like receptor</td>
</tr>
<tr>
<td>TREM2</td>
<td>Triggering receptor expressed on myeloid cells 2</td>
</tr>
</tbody>
</table>

1 Introduction

While the influence of docosahexaenoic acid [DHA] in Alzheimer’s disease [AD] or other neurodegenerative diseases focused the interest of scientific and medical communities, few works were devoted to the role of arachidonic acid [ARA] in these diseases. However, ARA is the second polyunsaturated fatty acids [PUFA] and the main member of the ω-6 series in brain, representing approximately 20% of the neuronal fatty acids. In addition, ARA is converted in various eicosanoid which are important mediators in the various phases of inflammation, having pro- or anti-inflammatory activities and is involved in synaptic transmission as retrograde messenger (Nishizaki et al., 1992) and regulator of SNARE formation (Rickman and Davletov, 2005). Furthermore, ARA is considered as an essential fatty acid at least in the maturation of brain in the pre- and post-natal periods.

It is well admitted that memory alterations are caused by synaptic dysfunctions in the AD early steps. Neuro-inflammation contributes to the AD early synaptic dysfunctions and the neuronal death in the late steps of the disease. Therefore, ARA is putatively involved in AD through its role in synaptic signal and in inflammatory process and regulation of its brain levels could be a target in the fight against AD occurrence and progression. Despite its putative role in the maintenance of brain functions, excessive dietary ARA intake could lead to higher brain incorporation and favour dysregulation of ARA mobilization and conversion into pro-inflammatory mediators. However, ARA content in western diets were poorly studied until now, which makes difficult the evaluation of their impact on AD risk.

We will first examine, in this review, the present knowledge about the ARA place in the current western diets. After a short overview about the AD molecular actors of AD and the role of neuro-inflammation, we will present recent data about ARA contribution to AD mechanisms including ours. On this basis, we will propose some hypothesis on the ARA-associated mechanisms in AD.

2 Arachidonic acid in the current western diets

Several studies were performed in the 1990s to evaluate the ARA daily intake in the western diets and its main sources in food. According to these studies, ARA daily intakes are in a wide range from 100 to 200 mg/day (Jonnalagadda et al., 1995; Mann et al., 1995). Studies on Japanese population reported a narrower but compatible range of values between 100 and 200 mg/day (Tokudome et al., 1999; Kuriki et al., 2002). This wide range of daily intakes (see Tab. 1 for comparison of the various studies) in western diets could make difficult the determination of ARA contents in currently consumed foods as suggested by some works about the ARA underestimation at least in American diet (Taber et al., 1998). ARA is provided directly from some food components such as red meat, chicken, eggs but also fish (http://appliedresearch.cancer.gov/diet/foodsources/fattyacids/table4.html, data from the National Health and Nutrition Examination Survey 2005–2006 USA). For example, a recent study established that ARA plasma concentration is associated with the consumption of red meat in the Singapore Chinese population (Seah et al., 2017). Although membrane phospholipids are frequently considered as the main source of ARA, Li et al. (1998) reported that meat fat and triglycerides provide similar or even higher ARA amounts especially in white meat, chicken or pork. The case of chicken or other poultry has to be considered since they are frequently consumed in many countries and higher ARA content in poultry improve the taste of the meat (Kiyohara et al., 2011; Takahashi et al., 2012). Methods of raising and feeding poultry could therefore increase dietary ARA intakes in humans.

ARA also results from the conversion of its precursor linoleic acid [LNA], i.e. the elongation by elongases and desaturation by Δ and Δ6 desaturases. LNA is much more abundant in human food than ARA. The European Food Safety Authority [EFSA]) recommended in 2009 the consumption of 2 g/day of α-linolenic acid and 10 g/day of LNA (European Food Safety Authority, 2009) which corresponded to an increase of the previous recommendations for ω-3 and ω-6 daily intakes (2 g/day and 6 g/day respectively in 1992). In parallel, the World Health Organization recommended that 0.5–2% and 2.5–5% of energy should be provided by ω-3 and

<table>
<thead>
<tr>
<th>Sources</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jonnalagadda et al., 1995</td>
<td>100 mg/day</td>
</tr>
<tr>
<td>Mann et al., 1995</td>
<td>< 150 mg/day</td>
</tr>
<tr>
<td>Tokudome et al., 1999</td>
<td>139–168 mg/day</td>
</tr>
<tr>
<td>Kuriki et al., 2002</td>
<td>130–150 mg/day</td>
</tr>
</tbody>
</table>
Peptide-dependent pathway

- Hyperphosphorylation
- Aggregation
- Affinity for microtubules
- Formation of NFT
- Neuronal transportations
- Neuronal death

Aβ peptide–dependent pathway

- Amyloid Precursor Protein (APP)
- Non-amyloido
dogenic pathway
- α-secretase
- Aβ peptide
- Membrane
- β-secretase
- γ-secretase
- Oligomers
- Fibrils
- Amyloid Plaques
- Synaptic toxicity
- Neuronal death
- Glial reaction

Fig. 1. Roles of tau and Aβ oligomers in AD. The tau-dependent pathway is associated to hyperphosphorylation and aggregation of tau-proteins inducing alterations of neuronal transportations and finally, neuronal death. The Aβ peptide-dependent pathway is associated to Aβ peptide production and toxic oligomer formation which alter synaptic functions. In a final step, Aβ peptide oligomers aggregate into amyloid plaques from oligomers which contribute to glial reaction and neuronal death.

ω-6 PUFAs, respectively (i.e. 1.5–6 g/day and 7.5–15 g/day of ω-3 and ω-6 PUFAs, respectively) (FAO/WHO, 2008). In France, the National Individual study on Alimentary Consumptions [INCA] showed that the French people eat on average 9 g/day of LNA (ω-6) and 0.9 g/day of linolenic acid (ω-3) while the US daily average intakes are 18 g and 2 g of LNA and linolenic acid, respectively, according the 2012 USDA study (USDA, 2012). A few studies investigated the rate of conversion of consumed LNA into ARA in adults and their data indicated that this conversion poorly contributes to the ARA amounts found in plasma or in liver (Adam et al., 2008). On the contrary, the brain ARA requirement of the fetal baboon are met by dietary maternal LNA (Su et al., 1999), which suggest that the brain development period must be considered separately from what happen in adult organism. Additional worldwide studies are needed to provide more precise evaluation of the daily ARA intake, the LNA contribution to the ARA amounts found in peripheral organs as well in brain and the main food sources of ARA.

3 Main molecular actors of Alzheimer’s disease and contribution of neuroinflammation

AD was originally defined in 1906 by Aloïs Alzheimer by the presence of two histological pathognomonic signs in brain of affected patients:

- neurofibrillary tangles (NFTs);
- amyloid plaques (Berrios, 1990).

Neurofibrillary tangles are formed by aggregation of hyperphosphorylated tau protein filaments while amyloid plaques result from aggregation of amyloid-β [Aβ] peptide (Fig. 1). Tau protein physiologically associates to microtubules in mature neurons and play an important role in neuronal signalling and axonal transport (Nisbet et al., 2015; Chong et al., 2018). Hyperphosphorylation of tau in AD probably result from a disequilibrium between kinase (CDK5, GSK3β, ERK2 and/or other still unidentified kinases) and phosphatase activities (Gong et al., 2000) and facilitate the formation of tau helical filaments which finally aggregate into NFTs. In addition, hyperphosphorylation of tau decrease its affinity for microtubules which drastically alters the axonal transportations (Iqbal et al., 1994). The importance of tau dysregulation is highlighted by the correlation between the clinical symptoms and the extension of NFTs through the various brain regions (the entorhinal cortex in the earliest steps, then in the limbic system and the hippocampus the neocortex in the latest stages of AD) (Silverman et al., 1997).

The amyloid plaques are formed by aggregates of amyloid-β [Aβ] peptide. The Aβ peptide is produced by the amyloidogenic cleavage of the transmembrane amyloid precursor protein [APP] which function is still unknown. In this amyloidogenic way, the N-terminal portion of APP is
cleaved by the major β-secretase BACE1 while the C-terminal portion of APP is cleaved by the γ-secretase, both the cleavage releasing the Aβ peptide and two other N-terminal (aSAPPβ) and C-terminal (AICD) fragments (Vassar et al., 1999). There are two major forms of Aβ peptide: Aβ1–40, which is the most abundant form (90%) and Aβ1–42 (10%), which is the most toxic form. Since the clinical symptoms are not correlated with the number and size of the amyloid plaques (Lue et al., 1999), many authors concluded in the early 2000s that amyloid plaques is not the engine of the pathological process but a late symptoms. They postulated that the Aβ oligomers, formed by the Aβ peptides before their fibrillization and deposition into plaques, are the initial agent of AD. This hypothesis is presently largely recognized since numerous studies demonstrated that these Aβ oligomers induce early synaptotoxicity and damages to neuronal networks, leading to memory impairment (Gong et al., 2003; Lacor et al., 2007; Shankar et al., 2008). Despite numerous works, the relationship between tau and Aβ peptide oligomers is still poorly known. Several studies established that the pathological effects induced by the Aβ peptide oligomers required the presence of intact tau (Vossel et al., 2010; Mairet-Coello et al., 2013). Although it is still a subject of debate, Aβ peptide oligomers appear as the earliest and more specific AD agents since tau alterations are observed in many other neurodegenerative diseases (Lebouvier et al., 2017).

One of the main question emerging from the tremendous numbers works on AD and Aβ peptide oligomers is the role cause of intracerebral accumulation of these oligomers in AD since there is no clear evidence of Aβ peptide overproduction in sporadic AD cases (>99% of the AD cases) on the contrary to the genetic cases (<1% of the cases). Dysregulations of neuro-inflammatory processes could at least contribute to this accumulation. The importance of neuroinflammation in AD is supported by the findings of associations between AD and genes coding for immune receptors, such as TREM2 (Guerreiro et al., 2013) and CD33 (Griciuc et al., 2014). Microglial cells, which are major actors in neuroinflammation with astrocytes, recognize Aβ peptide oligomers through the binding to the cell-surface toll like receptors (Walter et al., 2007; Liu et al., 2012). Stewart et al. described that TLR-4 and −6 form heterodimers able to bind Aβ peptide as well as oxidized LDL and associate with CD36 to generate cytokine production and inflammation (Stewart et al., 2010). Why microglial or astroglial cells are unable to eliminate Aβ peptide and impede accumulation of Aβ oligomers and plaque formations is still unknown. Whether neuroinflammation is just reactive to the presence of undesirable Aβ peptide oligomers or whether an active contributor to AD pathological processes is also an opened question. But many recent data highlighted neuroinflammation as an important actor and a therapeutic target against AD (Ardura-Fabregat et al., 2017).

4 Arachidonic acid in brain functions and Alzheimer’s disease: an essential lipid or a pathological agent?

ARA is usually considered as an essential fatty acid especially for brain development in association with DHA. To date, few studies provided some evidences to support this hypothesis. Since ARA and its precursor LNA are very abundant in human food and maternal milk, no drastic deficiency has been described on the contrary to DHA, which is 10–20-fold less abundant. Some studies in humans or in primes indicated that blood ARA levels are not influenced by diet on the contrary to DHA in humans (Ghebremeskel et al., 2000; Dia et al., 2005; Lauritzen et al., 2015) and suggested that DHA/ARA ratio is strictly maintained (Ghebremeskel et al., 2000). However, a slower growth has been observed in case of low ARA levels (Ghebremeskel et al., 2000). Several studies performed on rodents indicated that maternal ARA supplementation could compensate the alterations of cognitive abilities in pups induced by maternal metabolic diseases such as streptozotocin-induced diabetes (Zhao et al., 2011) and diet/ APO-E3 leiden genotype-induced obesity (Arnoldussen et al., 2016). A decrease of obesity was observed in the APO-E3 leiden adult mice with a combination of ARA and DHA supplementation but not with DHA alone (Wielinga et al., 2012). Studies on Δ6 desaturase knockout mice showed that supplementation with both DHA and ARA are necessary to compensate the PUFAs deficiencies in brain and the effects on motor activity and coordination during development (Hatanaka et al., 2016; Harauma et al., 2017). But, long-term administration of ARA in adult mice maintained under ω-3 deficient diet increases the severity of motor coordination alterations indicating that preservation of adequate DHA intake are necessary in any case (Harauma et al., 2015). It is important to emphasize that sex should be considered for these studies about dietary lipid intake and brain functions since brain lipid composition and diet influence differ in male and female mice (Rodriguez-Navas et al., 2016).

Higher dietary ARA intakes or ARA diet supplementation counteract the reduction of cognition and synaptic activity which are observed in healthy aged rodents (McGahon et al., 1997; McGahon et al., 1998; Kotani et al., 2003; Okaichi et al., 2005). An ARA positive effect has also been reported on neurogenesis in rodent hippocampus (Tokuda et al., 2014) but it is difficult to transpose these data in humans whose neurogenesis is weak especially during aging. On the contrary, we observed a negative influence of dietary ARA in a murine AD model. We previously showed that Aβ oligomers activate, in neuronal cells, cytosolic phospholipaseA2 (cPLA2) which specifically releases ARA from membrane phospholipids (Kriem et al., 2005). We then showed that cognitive abilities and expression of the synaptic proteins PSD95 and SNAP25 are preserved in cPLA2−/− mice after an intracerebroventricular injection (ICV) of Aβ oligomers while they are drastically altered in wild-type mice after this treatment (Desbène et al., 2012). By breeding cPLA2−/− and transgenic AD model mice overproducing Aβ peptide, Sanchez-Mejia et al. (2008) also showed that the reduction of cPLA2 reduce the neurotoxicity of Aβ peptides. Since cPLA2 specifically hydrolyze ARA containing phospholipids, we assumed that higher dietary ARA intakes could lead to higher ARA brain incorporation and favor its release by Aβ peptide oligomer-activated cPLA2. Therefore, we studied the effects of a single ICV of Aβ peptide oligomers in mice fed with 1% ARA containing diet for 12 weeks (Thomas et al., 2017). We also used a control diet in which oleic acid replaced ARA (see Fig. 2 for the experimental layout of this study). Both ARA-rich and control diets contained adequate amounts
of DHA and linolenic acid for murine needs. We observed a drastic reduction of learning abilities, reduction of AMPA receptor expression levels and increase of the astrocytic marker GFAP expression after Aβ peptide oligomer ICV in mice fed with the ARA-rich diet compared to the control group. These negative effects of dietary ARA are consistent with those of Amtul et al. (2012) who reported that a 2% ARA containing diets increased of Aβ (1-42) production and deposition in transgenic AD-model CRND8 mice after 21 weeks. By contrast, Hosono et al. (2015a, 2015b) described an improvement of cognitive alterations and a reduction of amyloid plaques by supplementation with ARA in 17-month-old Tg2576 mice. The authors did not observe the same positive results with DHA supplementation. But in this transgenic AD-model, the Aβ peptide overproduction due to mutant human APP overexpression leads to massive amyloid deposition and drastic alterations of cognitive abilities before the age of 12 months. In the early step of sporadic AD, there is no evidence of Aβ peptide overproduction and memory alterations are not caused by amyloid plaque formation but to the synaptotoxicity of Aβ oligomers. Our single Aβ oligomer ICV model is supposed to reproduce this early synaptotoxicity (Youssef et al., 2008). The two groups (Hosono et al., 2015a, 2015b; Amtul et al., 2012) who studied the effects of dietary ARA did not show any result about the modification of brain lipids and/or ARA brain incorporation. In our study, we measure reproducible but small increase of ARA levels in ARA diet-fed mice. This minor increase compared to the large modifications that we observed in blood and liver, do not support the existence of a drastic release of free ARA in brain and its direct influence on brain inflammation or synaptic functions. Dietary ARA could increase the brain sensitivity to Aβ oligomer toxicity through the transmission of inflammatory signals from the peripheral compartment to brain (see Tab. 2 for the comparison of the studies on the role of dietary ARA).

5 Dietary arachidonic acid: an actor of chronic sub-inflammation from gut to brain?

The role of acute or chronic systemic inflammation in the AD progression emerged quite recently in literature and was initially focused on the circulation of pro-inflammatory cytokines (Holmes et al., 2009) The usually admitted dogma that increased ARA levels increase eicosanoid production was supported by some works (Whelan et al., 1993; Whelan et al., 1997) but this eicosanoid production is not automatically associated to cytokine secretion (Kelley et al., 1997). Dietary ARA has been mainly involved in two chronic pathologies in which inflammation plays a critical role: bowel disease and obesity. Conversion of arachidonic acid into pro-inflammatory leukotriene was early recognized as a key event in bowel disease (Nielsen et al., 1987). But more recent works indicated that dietary ARA is rather protective against colitis progression (Ramakers et al., 2008; Knoch et al., 2010). ARA might favour obesity by acting on the differentiation of brite adipocytes which are energy-dissipating cells (Pisani et al., 2014). In addition, ARA impairs hypothalamic leptin signal, thus...
promoting obesity (Cheng et al., 2015). However, there is still a debate about the ARA in influence on obesity-associated inflammation (Suitor et al., 2017). The role of intestinal microbiota should be considered to reconcile the various data on dietary ARA effects on systemic chronic sub-inflammation in obesity, Bowel disease or chronic pathologies pro-inflammatory. For example, Zhuang et al. (2017) recently showed that dietary ARA favour obesity and by acting on the hypothalamus-liver-adipocytes axis but the effect is modulated by sex and intestinal microbiota, female mice being less pejoratively affected. This result should be related to the current work on the relationship between the gut microbiota and Alzheimer’s disease (for review see Jiang et al., 2017). Therefore, the role of gut microbiota, gut-brain communications, systemic inflammation and its transmission to brain through the blood-brain barrier should be further investigated to design preventive strategies against AD (Fig. 3).

5 Conclusion

AD prevention is a critical challenge to stop the increasing AD prevalence worldwide. Nutrition is one of the main tools in preventive strategies, but risk factor must be more precisely characterized. On this point of view, ARA contribution to western diet and AD risk should be more extensively studied. Several preclinical works including ours suggest that ARA could favour AD occurrence and progression although other studies indicated that ARA could play a positive role in physiological aging. Additional studies are required on the various mechanisms induced by high dietary intakes including modulation of inflammation, modification of the gut microbiota, influence on the gut-blood and blood-brain barriers. It is noticeable that a correlation between ARA and cholesterol consumption and higher risk of occurrence of Parkinson’s disease has been reported in the japan population (Miyake et al., 2010) which suggest that dietary ARA could be a target in preventive strategies against other neurodegenerative diseases.

Acknowledgements. We thank the France-Alzheimer association and the Region Loraine for their financial support to the works performed by the group and presented in this review.

Conflicts of interest. The authors declare that they have no conflicts of interest in relation to this article.

Table 2. Experimental features and main data of the previous studies on the role of arachidonic acid in AD. We previously showed the mice in which the expression of the main ARA releasing enzyme cPLA2 has been suppressed, are resistant to the neurotoxicity of the Aβ peptide oligomers. By contrast, an ARA-rich diet increase the sensitivity of the mice to the neurotoxicity of the Aβ peptide oligomers. Two other teams studied the role of dietary ARA and reported conflicting results.

<table>
<thead>
<tr>
<th>Sources</th>
<th>Main experimental features</th>
<th>Main experimental data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desbène et al., 2012</td>
<td>cPLA2⁻/⁻ mice</td>
<td>→ cognitive abilities in cPLA2⁻/⁻ mice</td>
</tr>
<tr>
<td>Thomas et al., 2017</td>
<td>ICV injection of Aβ peptides</td>
<td>→ PSD95 and SNP25 in cPLA2⁻/⁻ mice</td>
</tr>
<tr>
<td>Thomas et al., 2017</td>
<td>Balb/c mice</td>
<td>Learning abilities</td>
</tr>
<tr>
<td>Thomas et al., 2017</td>
<td>1% ARA diet for 12 weeks</td>
<td>AMPA Receptors</td>
</tr>
<tr>
<td>Thomas et al., 2017</td>
<td>ICV injection of Aβ peptides</td>
<td>GFAP</td>
</tr>
<tr>
<td>Thomas et al., 2017</td>
<td>CRND8 mice</td>
<td>Aβ1–42 production and deposition</td>
</tr>
<tr>
<td>Amtul et al., 2012</td>
<td>CRND8 mice</td>
<td>Cognitive alteration</td>
</tr>
<tr>
<td>Amtul et al., 2012</td>
<td>2% ARA diet for 21 weeks</td>
<td>Amyloid plaques</td>
</tr>
<tr>
<td>Hosono et al., 2015a, 2015b</td>
<td>Tg2576 mice</td>
<td>Arachidonic acid</td>
</tr>
<tr>
<td>Hosono et al., 2015a, 2015b</td>
<td>ARA Supplementation of the diet 4%</td>
<td>Liver, Adipocytes, Inflammatory mediators</td>
</tr>
</tbody>
</table>

Fig. 3. Putative roles of gut-brain communications, gut microbiota and systemic inflammation in the dietary arachidonic acid effects on the sensitivity to the Aβ peptide oligomer neurotoxicity. ARA has an impact directly or indirectly on the brain. An ARA-rich diet can modify the composition of intestinal microbiota to induce inflammatory mediators and thus, have effects on the Aβ peptide oligomer neurotoxicity. Indeed, arachidonic acid can affect the brain by going liver, adipocytes and inflammatory mediators.
References

McGahon B, Clements MP, Lynch MA. 1997. The ability of aged rats to sustain long-term potentiation is restored when the age-related decrease in membrane arachidonic acid concentration is reversed. Neuroscience 81: 9–16.

