Open Access
Volume 25, Numéro 4, July-August 2018
Numéro d'article D405
Nombre de pages 6
Section Lipids & Brain IV: Lipids in Alzheimer’s Disease / Lipids & Brain IV : les lipides dans la maladie d’Alzheimer
Publié en ligne 13 juin 2018
  • Abdullah L, Evans J, Shackleton B, et al. 2016. APOE4 genotype dependant deficits in DHA containing phospholipids and DHA transporters in the cerebrovasculature of Alzheimer’s disease patients. Alzheimer’s Association International Conference, Toronto. [Google Scholar]
  • Abdullah L, Evans JE, Emmerich T, et al. 2017. APOE epsilon4 specific imbalance of arachidonic acid and docosahexaenoic acid in serum phospholipids identifies individuals with preclinical mild cognitive impairment/Alzheimer’s disease. Aging (Albany NY) 9: 964–985. [Google Scholar]
  • Andrieu S, Guyonnet S, Coley N, et al. 2017. Effect of long-term omega 3 polyunsaturated fatty acid supplementation with or without multidomain intervention on cognitive function in elderly adults with memory complaints (MAPT): a randomised, placebo-controlled trial. Lancet Neurol 16: 377–389. [CrossRef] [PubMed] [Google Scholar]
  • Bazan NG. 2007. Omega-3 fatty acids, pro-inflammatory signaling and neuroprotection. Curr Opin Clin Nutr Metab Care 10: 136–141. [CrossRef] [PubMed] [Google Scholar]
  • Bazinet RP, Laye S. 2014. Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat Rev Neurosci 15: 771–785. [CrossRef] [PubMed] [Google Scholar]
  • Bertram L, Tanzi RE. 2009. Genome-wide association studies in Alzheimer’s disease. Hum Mol Genet 18: R137–R145. [CrossRef] [PubMed] [Google Scholar]
  • Bour A, Grootendorst J, Vogel E, et al. 2008. Middle-aged human apoE4 targeted-replacement mice show retention deficits on a wide range of spatial memory tasks. Behav Brain Res 193: 174–182. [CrossRef] [PubMed] [Google Scholar]
  • Brossard N, Croset M, Pachiaudi C, Riou JP, Tayot JL, Lagarde M. 1996. Retroconversion and metabolism of [13C]22:6n-3 in humans and rats after intake of a single dose of [13C]22:6n-3-triacylglycerols. Am J Clin Nutr 64: 577–586. [CrossRef] [PubMed] [Google Scholar]
  • Bullido MJ, Artiga MJ, Recuero M, et al. 1998. A polymorphism in the regulatory region of APOE associated with risk for Alzheimer’s dementia. Nat Genet 18: 69–71. [CrossRef] [Google Scholar]
  • Chouinard-Watkins R, Rioux-Perreault C, Fortier M, et al. 2013. Disturbance in uniformly 13C-labelled DHA metabolism in elderly human subjects carrying the apoE epsilon4 allele. Br J Nutr 110: 1751–1759. [CrossRef] [PubMed] [Google Scholar]
  • Chouinard-Watkins R, Vandal M, Leveille P, Pincon A, Calon F, Plourde M. 2017. Docosahexaenoic acid prevents cognitive deficits in human apolipoprotein E epsilon 4-targeted replacement mice. Neurobiol Aging 57: 28–35. [CrossRef] [PubMed] [Google Scholar]
  • Conway V, Larouche A, Alata W, Vandal M, Calon F, Plourde M. 2014. Apolipoprotein E isoforms disrupt long-chain fatty acid distribution in the plasma, the liver and the adipose tissue of mice. Prostaglandins Leukot Essent Fatty Acids 91: 261–267. [CrossRef] [PubMed] [Google Scholar]
  • Coon KD, Myers AJ, Craig DW, et al. 2007. A high-density whole-genome association study reveals that APOE is the major susceptibility gene for sporadic late-onset Alzheimer’s disease. J Clin Psychiatry 68: 613–618. [CrossRef] [PubMed] [Google Scholar]
  • Cunnane SC, Plourde M, Pifferi F, Begin M, Feart C, Barberger-Gateau P. 2009. Fish, docosahexaenoic acid and Alzheimer’s disease. Prog Lipid Res 48: 239–256. [CrossRef] [PubMed] [Google Scholar]
  • Dacks PA, Shineman DW, Fillit HM. 2013. Current evidence for the clinical use of long-chain polyunsaturated n-3 fatty acids to prevent age-related cognitive decline and Alzheimer’s disease. J Nutr Health Aging 17: 240–251. [CrossRef] [PubMed] [Google Scholar]
  • de Groot RH, van Boxtel MP, Schiepers OJ, Hornstra G, Jolles J. 2009. Age dependence of plasma phospholipid fatty acid levels: potential role of linoleic acid in the age-associated increase in docosahexaenoic acid and eicosapentaenoic acid concentrations. Br J Nutr: 1–7. [PubMed] [Google Scholar]
  • Fortier M, Tremblay-Mercier J, Plourde M, et al. 2010. Higher plasma n-3 fatty acid status in the moderately healthy elderly in southern Quebec: higher fish intake or aging-related change in n-3 fatty acid metabolism? Prostaglandins Leukot Essent Fatty Acids 82: 277–280. [CrossRef] [PubMed] [Google Scholar]
  • Harris WS, Miller M, Tighe AP, Davidson MH, Schaefer EJ. 2008. Omega-3 fatty acids and coronary heart disease risk: clinical and mechanistic perspectives. Atherosclerosis 197: 12–24. [CrossRef] [PubMed] [Google Scholar]
  • Horrobin DF. 1981. Loss of delta-6-desaturase activity as a key factor in aging. Med Hypotheses 7: 1211–1220. [CrossRef] [PubMed] [Google Scholar]
  • Huang TL, Zandi PP, Tucker KL, et al. 2005. Benefits of fatty fish on dementia risk are stronger for those without APOE epsilon4. Neurology 65: 1409–1414. [CrossRef] [PubMed] [Google Scholar]
  • Johnson LA, Torres ER, Impey S, Stevens JF, Raber J. 2017. Apolipoprotein E4 and insulin resistance interact to impair cognition and alter the epigenome and metabolome. Sci Rep 7: 43701. [CrossRef] [PubMed] [Google Scholar]
  • Kim J, Yoon H, Basak J. 2014. Apolipoprotein E in synaptic plasticity and Alzheimer’s disease: potential cellular and molecular mechanisms. Mol Cells. [Google Scholar]
  • Lane RM, Farlow MR. 2005. Lipid homeostasis and apolipoprotein E in the development and progression of Alzheimer’s disease. J Lipid Res 46: 949–968. [CrossRef] [PubMed] [Google Scholar]
  • Lemaitre-Delaunay D, Pachiaudi C, Laville M, Pousin J, Armstrong M, Lagarde M. 1999. Blood compartmental metabolism of docosahexaenoic acid (DHA) in humans after ingestion of a single dose of [(13)C]DHA in phosphatidylcholine. J Lipid Res 40: 1867–1874. [PubMed] [Google Scholar]
  • Leveille P, Chouinard-Watkins R, Windust A, et al. 2017. Metabolism of uniformly labeled 13C-eicosapentaenoic acid and 13C-arachidonic acid in young and old men. Am J Clin Nutr. [Google Scholar]
  • Mahley RW. 1988. Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 240: 622–630. [CrossRef] [Google Scholar]
  • Mahley RW, Weisgraber KH, Huang Y. 2009. Apolipoprotein E: structure determines function, from atherosclerosis to Alzheimer’s disease to AIDS. J Lipid Res 50(Suppl.): S183–S188. [CrossRef] [PubMed] [Google Scholar]
  • Ngandu T, Lehtisalo J, Solomon A, et al. 2015. A 2-year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet 385: 2255–2263. [CrossRef] [PubMed] [Google Scholar]
  • Nock TG, Chouinard-Watkins R, Plourde M. 2017. Carriers of an apolipoprotein E epsilon 4 allele are more vulnerable to a dietary deficiency in omega-3 fatty acids and cognitive decline. Biochim Biophys Acta 1862: 1068–1078. [CrossRef] [PubMed] [Google Scholar]
  • Paradis AM, Fontaine-Bisson B, Bosse Y, et al. 2005. The peroxisome proliferator-activated receptor alpha Leu162Val polymorphism influences the metabolic response to a dietary intervention altering fatty acid proportions in healthy men. Am J Clin Nutr 81: 523–530. [CrossRef] [PubMed] [Google Scholar]
  • Pitas RE, Boyles JK, Lee SH, Foss D, Mahley RW. 1987. Astrocytes synthesize apolipoprotein E and metabolize apolipoprotein E-containing lipoproteins. Biochim Biophys Acta 917: 148–161. [CrossRef] [PubMed] [Google Scholar]
  • Plourde M. 2009. Does altered omega-3 fatty acid metabolism contributing to cognitive aging? In: Gariépy Q, Ménard R, eds. Cognitive aging: causes, processes and effects. Hauppauge, NY: Nova Science Publishers. [Google Scholar]
  • Plourde M, Cunnane SC. 2007. Extremely limited synthesis of long chain polyunsaturates in adults: implications for their dietary essentiality and use as suppements. Appl Physiol Nutr Metab 32: 619–634. [CrossRef] [PubMed] [Google Scholar]
  • Plourde M, Tremblay-Mercier J, Fortier M, Pifferi F, Cunnane SC. 2009a. Eicosapentaenoic acid decreases postprandial beta-hydroxybutyrate and free fatty acid responses in healthy young and elderly. Nutrition 25: 289–294. [CrossRef] [PubMed] [Google Scholar]
  • Plourde M, Vohl MC, Vandal M, Couture P, Lemieux S, Cunnane SC. 2009b. Plasma n-3 fatty acid response to an n-3 fatty acid supplement is modulated by apoE epsilon4 but not by the common PPAR-alpha L162V polymorphism in men. Br J Nutr 102: 1121–1124. [CrossRef] [PubMed] [Google Scholar]
  • Plourde M, Chouinard-Watkins R, Vandal M, et al. 2011. Plasma incorporation, apparent retroconversion and beta-oxidation of 13C-docosahexaenoic acid in the elderly. Nutr Metabol 8: 5. [CrossRef] [Google Scholar]
  • Poirier J. 2008. Apolipoprotein E represents a potent gene-based therapeutic target for the treatment of sporadic Alzheimer’s disease. Alzheimers Dement 4: S91–S97. [CrossRef] [PubMed] [Google Scholar]
  • Poirier J, Miron J, Picard C, et al. 2014. Apolipoprotein E and lipid homeostasis in the etiology and treatment of sporadic Alzheimer’s disease. Neurobiol Aging 35(Suppl. 2): S3–S10. [CrossRef] [PubMed] [Google Scholar]
  • Rees D, Miles EA, Banerjee T, et al. 2006. Dose-related effects of eicosapentaenoic acid on innate immune function in healthy humans: a comparison of young and older men. Am J Clin Nutr 83: 331–342. [CrossRef] [PubMed] [Google Scholar]
  • Rodriguez-Palmero M, Lopez-Sabater MC, Castellote-Bargallo AI, de la Torre-Boronat MC, Rivero-Urgell M. 1997. Administration of low doses of fish oil derived N-3 fatty acids to elderly subjects. Eur J Clin Nutr 51: 554–560. [CrossRef] [PubMed] [Google Scholar]
  • Salem N, Jr., Vandal M, Calon F. 2015. The benefit of docosahexaenoic acid for the adult brain in aging and dementia. Prostaglandins Leukot Essent Fatty Acids 92: 15–22. [CrossRef] [PubMed] [Google Scholar]
  • Schaefer EJ, Bongard V, Beiser AS, et al. 2006. Plasma phosphatidylcholine docosahexaenoic acid content and risk of dementia and Alzheimer disease: the Framingham Heart Study. Arch Neurol 63: 1545–1550. [CrossRef] [PubMed] [Google Scholar]
  • Sharman MJ, Shui G, Fernandis AZ, 2010 et al. Profiling brain and plasma lipids in human APOE epsilon 2, epsilon 3, and epsilon 4 knock-in mice using electrospray ionization mass spectrometry. J Alzheimers Dis 20: 105–111. [CrossRef] [PubMed] [Google Scholar]
  • Siegel JA, Haley GE, Raber J. 2010. Apolipoprotein E isoform-dependent effects on anxiety and cognition in female TR mice. Neurobiol Aging. [Google Scholar]
  • Soininen H, Solomon A, Visser PJ, et al. 2017. 24-month intervention with a specific multinutrient in people with prodromal Alzheimer’s disease (LipiDiDiet): a randomised, double-blind, controlled trial. Lancet Neurol 16: 965–975. [CrossRef] [PubMed] [Google Scholar]
  • Solomon A, Turunen H, Ngandu T, et al. 2018. Effect of the apolipoprotein E genotype on cognitive change during a multidomain lifestyle intervention: a subgroup analysis of a randomized clinical trial. JAMA Neurol. [Google Scholar]
  • Teter B. 2004. ApoE-dependent plasticity in Alzheimer’s disease. J Mol Neurosci 23: 167–179. [CrossRef] [PubMed] [Google Scholar]
  • Vandal M, Alata W, Tremblay C, et al. 2014. Reduction in DHA transport to the brain of mice expressing human APOE4 compared to APOE2. J Neurochem 129: 516–526. [CrossRef] [PubMed] [Google Scholar]
  • Vandal M, Freemantle E, Tremblay-Mercier J, et al. 2008. Plasma omega-3 fatty acid response to a fish oil supplement in the healthy elderly. Lipids 43: 1085–1089. [CrossRef] [PubMed] [Google Scholar]
  • Vidgren HM, Agren JJ, Schwab U, Rissanen T, Hanninen O, Uusitupa MI. 1997. Incorporation of n-3 fatty acids into plasma lipid fractions, and erythrocyte membranes and platelets during dietary supplementation with fish, fish oil, and docosahexaenoic acid-rich oil among healthy young men. Lipids 32: 697–705. [CrossRef] [PubMed] [Google Scholar]
  • Yassine HN, Feng Q, Azizkhanian I, et al. 2016. Association of serum docosahexaenoic acid with cerebral amyloidosis. JAMA Neurol 73: 1208–1216. [CrossRef] [PubMed] [Google Scholar]
  • Yassine HN, Croteau E, Rawat V, et al. 2017. DHA brain uptake and APOE4 status: a PET study with [1-(11)C]-DHA. Alzheimers Res Ther 9: 23. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.