Open Access
Numéro
OCL
Volume 24, Numéro 2, March–April 2017
Numéro d'article D202
Nombre de pages 12
Section Bioavailability and tissue-targeting dietary lipids: new approaches to their formulation? / Biodisponibilité et ciblage tissulaire des lipides alimentaires : nouvelles stratégies pour la formulation ?
DOI https://doi.org/10.1051/ocl/2017006
Publié en ligne 6 avril 2017
  • AFSSA. 2010. Avis de l'agence française de sécurité sanitaire des aliments relatif à l'actualisation des apports nutritionnels conseillés pour les acides gras. http://www.anses.fr/Documents/NUT2006sa0359.pdf. [Google Scholar]
  • Anses. 2013. Table de composition nutritionnelle des aliments. Ciqual, 2013. https://pro.anses.fr/tableciqual/. [Google Scholar]
  • Anses. 2015. Apports en acides gras de la population vivant en france et comparaison aux apports nutritionnels conseillés définis en 2010. Avis de l'anses. Rapport d'étude, 244 p. [Google Scholar]
  • Armand M. 2007. Lipases and lipolysis in the human digestive tract: Where do we stand? Curr Opin Clin Nutr Metabol Care 10: 156–164. [CrossRef] [PubMed] [Google Scholar]
  • Armand M. 2008. Digestibilité des matières grasses chez l'homme. Sci Alim 28: 84–98. [CrossRef] [Google Scholar]
  • Armand M. 2013. Stratégies de contrôle de la biodisponibilité des lipides. In: Fardet A, Souchon I, Dupont D, eds. Structure des aliments et effets nutritionnels. Paris: QUAE, pp. 373–413. [Google Scholar]
  • Armand M, Borel P, Dubois C, et al. 1994. Characterization of emulsions and lipolysis of dietary lipids in the human stomach. Am J Physiol Gastrointest Liver Physiol 266: G372–G381. [Google Scholar]
  • Armand M, Hamosh M, Dipalma JS, et al. 1995. Dietary-fat modulates gastric lipase activity in healthy humans. Am J Clin Nutr 62: 74–80. [CrossRef] [PubMed] [Google Scholar]
  • Armand M, Borel P, Pasquier B, et al. 1996a. Physicochemical characteristics of emulsions during fat digestion in human, stomach and duodenum. Am J Physiol Gastrointest Liver Physiol 271: G172–G183. [Google Scholar]
  • Armand M, Hamosh M, Mehta NR, et al. 1996b. Effect of human milk or formula on gastric function and fat digestion in the premature infant. Pediatr Res 40: 429–437. [CrossRef] [PubMed] [Google Scholar]
  • Armand M, Pasquier B, André M, et al. 1999. Digestion and absorption of 2 fat emulsions with different droplet sizes in the human digestive tract. Am J Clin Nutr 70: 1096–1106. [CrossRef] [PubMed] [Google Scholar]
  • Awada M, Meynier A, Soulage CO, et al. 2013. N-3 PUFA added to high-fat diets affect differently adiposity and inflammation when carried by phospholipids or triacylglycerols in mice. Nutr Metab 10. [Google Scholar]
  • Bakala N'Goma JC, Amara S, Dridi K, Jannin V, Carrière F. 2012. Understanding the lipid-digestion processes in the gi tract before designing lipid-based drug-delivery systems. Ther Deliv 3: 105–124. [CrossRef] [Google Scholar]
  • Benzonana G, Desnuelle P. 1965. Kinetic study of the action of pancreatic lipase on emulsified triglycerides. Enzymology assay in heterogeneous medium. Biochim Biophys Acta 105: 121–136. [CrossRef] [PubMed] [Google Scholar]
  • Bernoud-Hubac N, Hachem M, Lo Van A, Picq M, Lagarde M, 2017. Specific uptake of DHA by the brain from a structured phospholipid, AceDoPC®. OCL, DOI: 10.1051/ocl/2016053. [Google Scholar]
  • Besnard P. 2016. Perception oro-sensorielle des lipides alimentaires et obésité. OCL 23: D308. [CrossRef] [EDP Sciences] [Google Scholar]
  • Boivin M, Lanspa SJ, Zinsmeister AR, Go VLW, Dimagno EP. 1990. Are diets associated with different rates of human interdigestive and postprandial pancreatic-enzyme secretion. Gastroenterology 99: 1763–1771. [CrossRef] [PubMed] [Google Scholar]
  • Borel P, Armand M, Pasquier B, et al. 1994. Digestion and absorption of tube-feeding emulsions with different droplet sizes and compositions in the rat. J Parenter Enteral Nutr 18: 534–543. [CrossRef] [Google Scholar]
  • Bunea R, El Farrah K, Deutsch L. 2004. Evaluation of the effects of neptune krill oil on the clinical course of hyperlipidemia. Altern Med Rev 9: 420–428. [PubMed] [Google Scholar]
  • Carey MC, Small DM, Bliss CM. 1983. Lipid digestion and absorption. Annu Rev Physiol 45: 651–677. [CrossRef] [Google Scholar]
  • Carrière F, Barrowman JA, Verger R, Laugier R. 1993. Secretion and contribution to lipolysis of gastric and pancreatic lipases during a test meal in humans. Gastroenterology 105: 876–888. [CrossRef] [PubMed] [Google Scholar]
  • Carrière F, Rogalska E, Cudrey C, Ferrato F, Laugier R, Verger R. 1997. In vivo and in vitro studies on the stereoselective hydrolysis of tri- and diglycerides by gastric and pancreatic lipases. Bioorg Med Chem 5: 429–435. [CrossRef] [PubMed] [Google Scholar]
  • Carrière F, Renou C, Lopez V, et al. 2000. The specific activities of human digestive lipases measured from the in vivo and in vitro lipolysis of test meals. Gastroenterology 119: 949–960. [CrossRef] [PubMed] [Google Scholar]
  • Carrière F, Renou C, Ransac S, et al. 2001. Inhibition of gastrointestinal lipolysis by orlistat during digestion of test meals in healthy volunteers. Am J Physiol Gastrointest Liver Physiol 281: G16–G28. [PubMed] [Google Scholar]
  • Carrière F, Grandval P, Gregory PC, et al. 2005. Does the pancreas really produce much more lipase than required for fat digestion? J Pancreas 6: 206–215. [Google Scholar]
  • Christensen MS, Hoy CE. 1996. Effects of dietary triacylglycerol structure on triacylglycerols of resultant chylomicrons from fish oil- and seal oil-fed rats. Lipids 31: 341–344. [CrossRef] [PubMed] [Google Scholar]
  • Christensen MS, Hoy CE, Redgrave TG. 1994. Lymphatic absorption of n-3 polyunsaturated fatty acids from marine oils with different intramolecular fatty acid distributions. Biochim Biophys Acta 1215: 198–204. [CrossRef] [PubMed] [Google Scholar]
  • Cook CM, Larsen TS, Derrig LD, Kelly KM, Tande KS. 2016. Wax ester rich oil from the marine crustacean, Calanus finmarchicus, is a bioavailable source of EPA and DHA for human consumption. Lipids 51: 1137–1144. [CrossRef] [PubMed] [Google Scholar]
  • Corstens MN, Berton-Carabin CC, De Vries R, Troost FJ, Masclee AAM, Schroën K. 2017. Food-grade micro-encapsulation systems that may induce satiety via delayed lipolysis: a review. Crit Rev Food Sci Nutr. 57: 2218–2244. DOI:10.1080/10408398.2015.105763400-00. [CrossRef] [PubMed] [Google Scholar]
  • Couedelo L, Vaysse C, Vaique E, et al. 2012. The fraction of alpha-linolenic acid present in the sn-2 position of structured triacylglycerols decreases in lymph chylomicrons and plasma triacylglycerols during the course of lipid absorption in rats. J Nutr 142: 70–75. [CrossRef] [PubMed] [Google Scholar]
  • Couedelo L, Amara S, Lecomte M, et al. 2015. Impact of various emulsifiers on ALA bioavailability and chylomicron synthesis through changes in gastrointestinal lipolysis. Food Funct 6: 1726–1736. DOI:10.1039/c5fo00070j. [CrossRef] [PubMed] [Google Scholar]
  • Daher CF, Baroody GM, Howland RJ. 2003. Effect of a surfactant, Tween 80, on the formation and secretion of chylomicrons in the rat. Food Chem Toxicol 41: 575–582. [CrossRef] [PubMed] [Google Scholar]
  • Favé G, Coste TC, Armand M. 2004. Physicochemical properties of lipids: new strategies to manage fatty acid bioavailability. Cell Mol Biol 50: 815–831. [PubMed] [Google Scholar]
  • Favé G, Leveque C, Peyrot J, Pieroni G, Coste TC, Armand M. 2007. Modulation of gastric lipolysis by the phospholipid specie: link to specific lipase-phospholipid interaction at the lipid/water interface? FASEB J 21: A1010. [Google Scholar]
  • Feron G, Poette J. 2013. In-mouth mechanism leading to the perception of fat in humans: From detection to preferences. The particular role of saliva. OCL 20: 102–107. [CrossRef] [EDP Sciences] [Google Scholar]
  • Feron G, Salles C. 2013. Rôle de la sphère orale. In: Fardet A, Souchon I, Dupont D, eds. Structure des aliments et effets nutritionnels. Paris: QUAE, pp. 35–55. [Google Scholar]
  • Foltz M, Maljaars J, Schuring EAH, et al. 2009. Intragastric layering of lipids delays lipid absorption and increases plasma CCK but has minor effects on gastric emptying and appetite. Am J Physiol Gastrointest Liver Physiol 296: G982–G991. [CrossRef] [Google Scholar]
  • Freeman CP. 1969. Properties of fatty acids in dispersions of emulsified lipid and bile salt and the significance of these properties in fat absorption in the pig and the sheep. Br J Nutr 23: 249–263. [CrossRef] [PubMed] [Google Scholar]
  • Garaiova I, Gushina IA, Plummer SF, Tang J, Wang D, Plummer NT. 2007. A randomised cross-over trial in healthy adults indicating improved absorption of omega-3 fatty acids by pre-emulsification. Nutr J 6. [PubMed] [Google Scholar]
  • Gargouri Y, Pieroni G, Riviere C, et al. 1986a. Importance of human gastric lipase for intestinal lipolysis – an in vitro study. Biochim Biophys Acta 879: 419–423. [CrossRef] [PubMed] [Google Scholar]
  • Gargouri Y, Pieroni G, Riviere C, et al. 1986b. Kinetic assay of human gastric lipase on short-chain and long-chain triacylglycerol emulsions. Gastroenterology 91: 919–925. [CrossRef] [Google Scholar]
  • Genot C, Guillet S, Métro B. 1989. Rheological properties of gelatin gels filled with phospholipid vesicles. Dynamic and uniaxial compresion measurements. Progr Colloid Polym Sci 79: 18–23. [CrossRef] [Google Scholar]
  • Genot C, Eymard S, Viau M. 2004. Comment protéger les acides gras poly-insaturés à longues chaînes oméga 3 (AGPI - LC w3) vis-à vis de l'oxydation ? OCL 11(2): 133–141. [CrossRef] [EDP Sciences] [Google Scholar]
  • Genot C, Berton C, Ropers MH. 2013a. The role of the interfacial layer and emulsifying proteins in the oxidation in oil-in water emulsions. In: Logan A, Nienaber U, Pan X, eds. Lipid oxidation: challenges in food systems. AOCS Press, pp. 177–210. [CrossRef] [Google Scholar]
  • Genot C, Kabri TH, Meynier A. 2013b. 5-stabilisation of omega-3 oils and enriched foods using emulsifiers. In: Jacobsen C, Nielsen S, Frisenfeldt Horn A, Moltke Sorensen AD, eds. Food enrichment with omega-3 fatty acids. Cambridge: Woolhead Publishing Limited, pp. 150–193. [CrossRef] [Google Scholar]
  • Genot C, Meynier A, Bernoud-Hubac N, Michalski MC. 2016. Bioavailability of lipids in fish and fish oils. In: Raatz SK, Bibus DM, eds. Fish and fish oil in health and disease prevention 1st ed. Academic Press, London, pp. 61–74. [CrossRef] [Google Scholar]
  • Hamilton JA. 2007. New insights into the roles of proteins and lipids in membrane transport of fatty acids. Prostaglandins Leukot Essent Fatty Acids 77: 355–361. [CrossRef] [PubMed] [Google Scholar]
  • Hamosh M. 1990. Lingual and gastric lipases: their role in fat digestion. Boca Raton, FL: CRC Press, pp. 1–239. [Google Scholar]
  • Hamosh M, Burns WA. 1977. Lipolytic-activity of human lingual glands (ebner). Lab Invest 37: 603–608. [PubMed] [Google Scholar]
  • Hamosh M, Bitman J, Liao TH, et al. 1989. Gastric lipolysis and fat-absorption in preterm infants – effect of medium-chain triglyceride or long-chain triglyceride-containing formulas. Pediatrics 83: 86–92. [PubMed] [Google Scholar]
  • Hofmann AF. 1963. The function of bile salts in fat absorption. The solvent properties of dilute micellar solutions of conjugated bile salts. Biochem J 89: 57–68. [CrossRef] [PubMed] [Google Scholar]
  • Hussein MO, Hoad CL, Wright J, et al. 2015. Fat emulsion intragastric stability and droplet size modulate gastrointestinal responses and subsequent food intake in young adults. J Nutr 145: 1170–1177. [CrossRef] [PubMed] [Google Scholar]
  • Iqbal J, Hussain MM. 2009. Intestinal lipid absorption. Am J Physiol Endocrinol Metab 296: E1183–E1194. [CrossRef] [PubMed] [Google Scholar]
  • Iverson SJ, Kirk CL, Hamosh M, Newsome J. 1991. Milk lipid digestion in the neonatal dog: the combined actions of gastric and bile salt stimulated lipases. Biochim Biophys Acta 1083: 109–119. [CrossRef] [PubMed] [Google Scholar]
  • Joyce P, Whitby CP, Prestidge CA. 2016. Nanostructuring biomaterials with specific activities towards digestive enzymes for controlled gastrointestinal absorption of lipophilic bioactive molecules. Adv Colloid Interface Sci 237: 52–75. [CrossRef] [PubMed] [Google Scholar]
  • Kalantzi L, Goumas K, Kalioras V, Abrahamsson B, Dressman JB, Reppas C. 2006. Characterization of the human upper gastrointestinal contents under conditions simulating bioavailability/bioequivalence studies. Pharm Res 23: 165–176. [CrossRef] [PubMed] [Google Scholar]
  • Kargar M, Spyropoulos F, Norton IT. 2011. The effect of interfacial microstructure on the lipid oxidation stability of oil-in-water emulsions. J Colloid Interface Sci 357: 527–533. [CrossRef] [PubMed] [Google Scholar]
  • Karupaiah T, Sundram K. 2007. Effects of stereospecific positioning of fatty acids in triacylglycerol structures in native and randomized fats: A review of their nutritional implications. Nutr Metab 4. [PubMed] [Google Scholar]
  • Keogh JB, Wooster TJ, Golding M, Day L, Otto B, Clifton PM. 2011. Slowly and rapidly digested fat emulsions are equally satiating but their triglycerides are differently absorbed and metabolized in humans. J Nutr 141: 809–815. [CrossRef] [PubMed] [Google Scholar]
  • Lagarde M, Bernoud-Hubac N. 2012. Relevance of DHA-containing lysophospholipids. Eur J Lipid Sci Technol 114: 112–113. [CrossRef] [Google Scholar]
  • Lagarde M, Bernoud N, Brossard N, et al. 2001. Lysophosphatidylcholine as a preferred carrier form of docosahexaenoic acid to the brain. J Mol Neurosci 16: 201–204. [CrossRef] [PubMed] [Google Scholar]
  • Lai HC, Ney DM. 1998. Gastric digestion modifies absorption of butterfat into lymph chylomicrons in rats. J Nutr 128: 2403–2410. [CrossRef] [PubMed] [Google Scholar]
  • Laugerette F, Passilly-Degrace P, Patris B, et al. 2005. CD36 involvement in orosensory detection of dietary lipids, spontaneous fat preference, and digestive secretions. J Clin Invest 115: 3177–3184. [CrossRef] [PubMed] [Google Scholar]
  • Linderborg KM, Kallio HPT. 2005. Triacylglycerol fatty acid positional distribution and postprandial lipid metabolism. Food Rev Int 21: 331–355. [CrossRef] [Google Scholar]
  • Livney YD. 2015. Nanostructured delivery systems in food: Latest developments and potential future directions. Curr Opin Food Sci 3: 125–135. [CrossRef] [Google Scholar]
  • Lo CM, Tso P. 2009. Physicochemical basis of the digestion and absorption of triacylglycerol. In: McClements DJ, Decker EA, eds. Designing functional foods. Measuring and controlling food structure breakdown and nutrient absorption. Oxford: Woodhead Publishing, pp. 94–126. [Google Scholar]
  • Lopez C. 2011. Milk fat globules enveloped by their biological membrane: unique colloidal assemblies with a specific composition and structure. Curr Opin Colloid Interface Sci 16: 391–404. [CrossRef] [Google Scholar]
  • Lopez C, Madec MN, Jimenez-Flores R. 2010. Presence of lipid rafts in the bovine milk fat globule membrane revealed by the lateral segregation of phospholipids and heterogeneous distribution of glycoproteins. Food Chem 120: 22–33. [CrossRef] [Google Scholar]
  • Mao LK, Miao S. 2015. Structuring food emulsions to improve nutrient delivery during digestion. Food Eng Rev 7: 439–451. [CrossRef] [Google Scholar]
  • Marciani L, Wickham M, Singh G, et al. 2007. Enhancement of intragastric acid stability of a fat emulsion meal delays gastric emptying and increases cholocystokinin release and gallbladder contraction. Am J Physiol Gastrointest Liver Physiol 296: G982–G991. [Google Scholar]
  • Marciani L, Faulks R, Wickham MSJ, et al. 2009. Effect of intragastric acid stability of fat emulsions on gastric emptying, plasma lipid profile and postprandial satiety. Br J Nutr 101: 919–928. [CrossRef] [PubMed] [Google Scholar]
  • Marefati A, Rayner M, Timgren A, Dejmek P, Sjoo M. 2013. Freezing and freeze-drying of pickering emulsions stabilized by starch granules. Colloids Surf A: Physicochem Eng Aspects 436: 512–520. [CrossRef] [Google Scholar]
  • Masuda D, Hirano K, Oku H, et al. 2009. Chylomicron remnants are increased in the postprandial state in CD36 deficiency. J Lipid Res 50: 999–1011. [CrossRef] [PubMed] [Google Scholar]
  • Mattes RD. 2011. Oral fatty acid signaling and intestinal lipid processing: support and supposition. Physiol Behav 105: 27–35. [CrossRef] [PubMed] [Google Scholar]
  • McClements DJ. 2015. Reduced-fat foods: the complex science of developing diet-based strategies for tackling overweight and obesity. Adv Nutr 6: 338S–352S. [CrossRef] [PubMed] [Google Scholar]
  • Mekki N, Charbonnier M, Borel P, et al. 2002. Butter differs from olive oil and sunflower oil in its effects on postprandial lipemia and triacylglycerol-rich lipoproteins after single mixed meals in healthy young men. J Nutr 132: 3642–3649. [CrossRef] [PubMed] [Google Scholar]
  • Meynier A, Michalski MC, Marze S, Kenmogne-Domguia HB, Awada M, Genot C. 2013. Devenir digestif et effets métaboliques des matrices formulées à base de lipides. In: Fardet A, Souchon I, Dupont D, eds. Structure des aliments et effets nutritionnels. Paris: QUAE, pp. 215–240. [Google Scholar]
  • Michalski MC, Genot C, Gayet C, et al. 2013. Multiscale structures of lipids in foods as parameters affecting fatty acid bioavailability and lipid metabolism. Prog Lipid Res 52: 354–373. [CrossRef] [PubMed] [Google Scholar]
  • Moreau H, Laugier R, Gargouri Y, Ferrato F, Verger R. 1988. Human preduodenal lipase is entirely of gastric fundic origin. Gastroenterology 95: 1221–1226. [CrossRef] [PubMed] [Google Scholar]
  • Mu H, Porsgaard T. 2005. The metabolism of structured triacylglycerols. Prog Lipid Res 44: 430–448. [CrossRef] [PubMed] [Google Scholar]
  • Norton JE, Gonzalez Espinosa Y, Watson RL, Spyropoulos F, Norton IT. 2015. Functional food microstructures for macronutrient release and delivery. Food Funct 6: 663–678. [CrossRef] [PubMed] [Google Scholar]
  • Poette J, Mekoué J, Neyraud E, et al. 2014. Fat sensitivity in humans: Oleic acid detection threshold is linked to saliva composition and oral volume. Flav Fragr J 29: 39–49. [CrossRef] [Google Scholar]
  • Raynal-Ljutovac K, Bouvier J, Gayet C, et al. 2011. Organisation structurale et moléculaire des lipides dans les aliments : Impacts possibles sur leur digestion et leur assimilation par l'homme. OCL 18: 324–351. [CrossRef] [EDP Sciences] [Google Scholar]
  • Rayner M, Marku D, Eriksson M, Sjoo M, Dejmek P, Wahlgren M. 2014. Biomass-based particles for the formulation of pickering type emulsions in food and topical applications. Colloids Surf A: Physicochem Eng Aspects 458: 48–62. [CrossRef] [Google Scholar]
  • Roman C, Carriere F, Villeneuve P, et al. 2007. Quantitative and qualitative study of gastric lipolysis in premature infants: do MCT-enriched infant formulas improve fat digestion? Pediatr Res 61: 83–88. [CrossRef] [PubMed] [Google Scholar]
  • Singh H, Ye A, Horne D. 2009. Structuring food emulsions in the gastrointestinal tract to modify lipid digestion. Prog Lipid Res 48: 92–100. [CrossRef] [PubMed] [Google Scholar]
  • Singh H, Ye AQ, Ferrua MJ. 2015. Aspects of food structures in the digestive tract. Curr Opin Food Sci 3: 85–93. [CrossRef] [Google Scholar]
  • Sugasini D, Devaraj VC, Ramesh M, Lokesh BR. 2014. Lymphatic transport of α-linolenic acid and its conversion to long chain n-3 fatty acids in rats fed microemulsions of linseed oil. Lipids 49: 225–233. [CrossRef] [PubMed] [Google Scholar]
  • Tressou J, Pasteau S, Dartinet SD, Simon N. 2016. Données récentes sur les apports en acides gras des français. OCL 23: D303. [CrossRef] [EDP Sciences] [Google Scholar]
  • Velikov KP, Pelan E. 2008. Colloidal delivery systems for micronutrients and nutraceuticals. Soft Matter 4: 1964–1980. [CrossRef] [Google Scholar]
  • Vors C, Pineau G, Gabert L, et al. 2013. Modulating absorption and postprandial handling of dietary fatty acids by structuring fat in the meal: a randomized crossover clinical trial. Am J Clin Nutr 97: 23–36. [CrossRef] [PubMed] [Google Scholar]
  • Yao MF, Xiao H, McClements DJ. 2014. Delivery of lipophilic bioactives: assembly, disassembly, and reassembly of lipid nanoparticles. In: Doyle MP, Klaenhammer TR, eds. Annual review of food science and technology, Vol. 5. Palo Alto: Annual Reviews, pp. 53–81. [PubMed] [Google Scholar]
  • Yoshida H, Mawatari M, Ikeda I, Imaizumi K, Seto A, Tsuji H. 1999. Effect of dietary seal and fish oils on triacylglycerol metabolism in rats. J Nutr Sci Vitaminol (Tokyo) 45: 411–421. [CrossRef] [PubMed] [Google Scholar]
  • Zhang ZP, Zhang RJ, Zou LQ, McClements DJ. 2016. Tailoring lipid digestion profiles using combined delivery systems: mixtures of nanoemulsions and filled hydrogel beads. RSC Adv 6: 65631–65637. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.