Open Access
Numéro
OCL
Volume 24, Numéro 2, March–April 2017
Numéro d'article D205
Nombre de pages 4
Section Bioavailability and tissue-targeting dietary lipids: new approaches to their formulation? / Biodisponibilité et ciblage tissulaire des lipides alimentaires : nouvelles stratégies pour la formulation ?
DOI https://doi.org/10.1051/ocl/2016053
Publié en ligne 21 février 2017
  • Belayev L, Khoutorova L, Atkins KD, Bazan NG. 2009. Robust docosahexaenoic acid-mediated neuroprotection in a rat model of transient, focal cerebral ischemia. Stroke 40: 3121–3126. [CrossRef] [PubMed] [Google Scholar]
  • Bernoud N, Fenart L, Molière P, et al. 1999. Preferential transfer of 2-docosahexaenoyl-1-lysophosphatidylcholine through an in vitro blood-brain barrier over unesterified docosahexaenoic acid. J Neurochem 72: 338–345. [CrossRef] [PubMed] [Google Scholar]
  • Belkouch M, Hachem M, Elgot A, et al. 2016. The pleiotropic effects of omega-3 docosahexaenoic acid on the hallmarks of Alzheimer's disease. J Nutr Biochem 38: 1–11. [CrossRef] [Google Scholar]
  • Bourre JM, Bonneil M, Clément M, et al. 1993. Function of dietary polyunsaturated fatty acids in the nervous system. Prostaglandins Leukot Essent Fatty Acids 48: 5–15. [CrossRef] [PubMed] [Google Scholar]
  • Bousquet M, Saint-Pierre M, Julien C, Salem N Jr, Cicchetti F, Calon F. 2008. Beneficial effects of dietary omega-3 polyunsaturated fatty acid on toxin-induced neuronal degeneration in an animal model of Parkinson's disease. FASEB J 22: 1213–1225. [CrossRef] [PubMed] [Google Scholar]
  • Brossard N, Croset M, Lecerf J, et al. 1996. Metabolic fate of an oral tracer dose of [13C]docosahexaenoic acid triglycerides in the rat. Am J Physiol 270: R846– R854. [PubMed] [Google Scholar]
  • Brossard N, Croset M, Normand S, et al. 1997. Human plasma albumin transports [13C]docosahexaenoic acid in two lipid forms to blood cells. J Lipid Res 7: 1571–1582. [Google Scholar]
  • Chauveau F, Cho TH, Perez M, et al. 2011. Brain-targeting form of docosahexaenoic acid for experimental stroke treatment: MRI evaluation and anti-oxidant impact. Curr Neurovasc Res 8: 95–102. [CrossRef] [PubMed] [Google Scholar]
  • Croset M, Brossard N, Polette A, Lagarde M. 2000. Characterization of plasma unsaturated lysophosphatidylcholines in human and rat. Biochem J 345(Pt 1): 61–67. [CrossRef] [PubMed] [Google Scholar]
  • Hachem M, Géloën A, Lo Van A, et al. 2016. Efficient docosahexaenoic acid uptake by the brain from a structured phospholipid. Mol Neurobiol 53: 3205–3215. [CrossRef] [PubMed] [Google Scholar]
  • Hashimoto M, Hossain S. 2011. Neuroprotective and ameliorative actions of polyunsaturated fatty acids against neuronal diseases: beneficial effect of docosahexaenoic acid on cognitive decline in Alzheimer's disease. J Pharmacol Sci 116: 150–162. [CrossRef] [Google Scholar]
  • Jensen M, Skarsfeldt T, Hoy C. 1996. Correlation between level of (n-3) polyunsaturated fatty acids in brain phospholipids and learning ability in rats. A multiple generation study. Biochim Biophys Acta 1300: 203–209. [CrossRef] [Google Scholar]
  • Lagarde M, Guichardant M, Picq M, Michaud S, Doutheau S. 2008. Method for preparing acetyl,docosahexaenoyl-glycerophosphocholine and use thereof for delivering polyunsaturated fatty acids. WO 2008/068413. [Google Scholar]
  • Lemaitre-Delaunay D, Pachiaudi C, Laville M, Pousin J, Armstrong M, Lagarde M. 1999. Blood compartmental metabolism of docosahexaenoic acid (DHA) in humans after ingestion of a single dose of [(13)C]DHA in phosphatidylcholine. J Lipid Res 40: 1867–1874. [PubMed] [Google Scholar]
  • Lo Van A, Sakayori N, Hachem M, et al. 2016. Mechanisms of DHA transport to the brain and potential therapy to neurodegenerative diseases. Biochimie 130: 163–167. [CrossRef] [PubMed] [Google Scholar]
  • Makrides M, Neumann M, Gibson R. 1996. Is dietary docosahexaenoic acid essential for term infants? Lipids 31: 115–119. [CrossRef] [PubMed] [Google Scholar]
  • Nguyen LN, Ma D, Shui G, et al. 2014. Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid. Nature 509: 503–506. [CrossRef] [PubMed] [Google Scholar]
  • O'Brien J, Sampson E. 1965. Fatty acid and fatty aldehyde composition of the major brain lipids in normal human gray matter, white matter, and myelin. J Lipid Res 6: 545–551. [PubMed] [Google Scholar]
  • Polette A, Deshayes C, Chantegrel B, Croset M, Armstrong JM, Lagarde M. 1999. Synthesis of acetyl,docosahexaenoyl-glycerophosphocholine and its characterization using nuclear magnetic resonance. Lipids 34: 1333–1337. [CrossRef] [PubMed] [Google Scholar]
  • Quek DBY, Nguyen LN, Fanc H, Silver DL. 2016. Structural insights into the transport mechanism of the human sodium-dependent lysophosphatidylcholine transporter Mfsd2a. J Biol Chem 291: 9383–9394. [CrossRef] [PubMed] [Google Scholar]
  • Rogers L, Valentine C, Keim S. 2013. DHA supplementation: current implications in pregnancy and childhood. Pharmacol Res 70: 13–19. [CrossRef] [Google Scholar]
  • Thies F, Pillon C, Moliere P, Lagarde M, Lecerf J. 1994. Preferential incorporation of sn-2 lysoPC DHA over unesterified DHA in the young rat brain. Am J Physiol 267: R1273–R1279. [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.