Open Access
Numéro |
OCL
Volume 23, Numéro 4, July-August 2016
|
|
---|---|---|
Numéro d'article | D407 | |
Nombre de pages | 15 | |
Section | Dossier: How might oilseeds help meet the protein challenge? / Comment les oléoprotéagineux peuvent-ils répondre au défi protéines ? | |
DOI | https://doi.org/10.1051/ocl/2016028 | |
Publié en ligne | 5 juillet 2016 |
- Aachary AA, Thiyam U. 2012. A pursuit of the functional nutritional and bioactive properties of canola proteins and peptides. Crit. Rev. Food Sci. Nutr. 52: 965–979. [CrossRef] [PubMed] [Google Scholar]
- Adachi M, Kanamori J, Masu da T, et al. 2003. Crystal structure of soybean 11S globulin: Glycinin A3B4 homohexamer. Proc. Natl. Acad. Sci. USA 100: 7395–7400. [CrossRef] [Google Scholar]
- Aider M, Barbana C. 2011. Canola proteins: Composition, extraction, functional properties, bioactivity, applications as a food ingredient and allergenicity – a practical and critical review. Trends Food Sci. Technol. 22: 21–39. [CrossRef] [Google Scholar]
- Akbari A, Wu J. 2016. Cruciferin nanoparticles: Preparation, characterization and their potential application in delivery of bioactive compounds. Food Hydrocoll. 54: 107–118. [CrossRef] [Google Scholar]
- Alashi AM, Blanchard CL, Mailer RJ, Agboola SO. 2013. Technological and bioactive functionalities of canola meal proteins and hydrolysates. Food Rev. Int. 29: 231–260. [CrossRef] [Google Scholar]
- Bjergegaard C, Eggum BO, Jensen SK, Sørensen H. 1991. Dietary fibres in oilseed rape: Physiological and antinutritional effects in rats of isolated idf and sdf added to a standard diet. J. Anim. Physiol. Anim. Nutr. 66: 69–79. [CrossRef] [Google Scholar]
- Boland M. 2013. Global food supply-the world’s need for protein. Available from: www.Riddet.Ac.Nz/sites/default/files/content/2013{%}20protein{%}20supply{%}20mike{%}20boland.Pdf (last consult: 2016/20/03). [Google Scholar]
- Bos C, Airinei G, Mariotti F, et al. 2007. The poor digestibility of rapeseed protein is balanced by its very high metabolic utilization in humans. J. Nutr. 137: 594–600. [CrossRef] [PubMed] [Google Scholar]
- Boutry C, Fouillet H, Mariotti F, Blachier F, Tome D, Bos C. 2011. Rapeseed and milk protein exhibit a similar overall nutritional value but marked difference in postprandial regional nitrogen utilization in rats. Nutr. Metab. 8: 52. [CrossRef] [PubMed] [Google Scholar]
- CCC. 2016. Canola Meal Feeding Guide. Available from: www.canolacouncil.org/media/516716/2015_canola_meal_feed_industry_guide.pdf (last consult: 2016/29/03) [Google Scholar]
- CGC. 2016. Canadian Grain Commission. Quality of western Canadian Canola 2015. Available from https://www.grainscanada.gc.ca/canola/harvest-recolte/2015/hqc15-qrc15-4-en.htm (last consult: 2016/25/05). [Google Scholar]
- Chang C, Nickerson MT. 2014. Effect of plasticizer-type and genipin on the mechanical, optical, and water vapor barrier properties of canola protein isolate-based edible films. Eur. Food Res. Technol. 238: 35–46. [CrossRef] [Google Scholar]
- Chen, Q. 2004. Determination of phytic acid and inositol pentakisphosphates in foods by high-performance ion chromatography. J. Agric. Food Chem. 52: 4604–4613. [CrossRef] [PubMed] [Google Scholar]
- Cheung L-L, Wanasundara JPD, Nickersen MT. 2014. The effect of pH and NaCl levels on the physicochemical and emulsifying properties of a cruciferin-rich protein isolate. Food Biophys. 9: 105–113 [CrossRef] [Google Scholar]
- Cheung L, Wanasundara JPD, Nickerson MT. 2015. Effect of pH and NaCl on the emulsifying properties of a napin protein isolate. Food Biophys. 10: 30–37. [CrossRef] [Google Scholar]
- Crouch ML, Sussex IM. 1981. Development and storage-protein synthesis in brassica napus l. Embryos in vivo and in vitro. Planta 153: 64–74. [CrossRef] [PubMed] [Google Scholar]
- Dabrowski KJ, Sosulski FW. 1984. Composition of free and hydrolyzable phenolic acids in defatted flours of ten oilseeds. J. Agric. Food Chem. 32: 128–130. [CrossRef] [Google Scholar]
- Dalgalarrondo M, Robin J-M, Azanza J-L. 1986. Subunit composition of the globulin fraction of rapeseed (Brassica napus L.). Plant Sci. 43: 115–124. [CrossRef] [Google Scholar]
- Damodaran S. Amino acids, peptides and proteins. In: Damodaran, S, Parkin, KL, Fennema, OR (eds.). Fennemas’s food chemistry CRC Press, Boca Raton, FL, USA, 2008, pp. 217–330. [Google Scholar]
- de Lange CF, Souffrant WB, Sauer WC. 1990. Real ileal protein and amino acid digestibilities in feedstuffs for growing pigs as determined with the 15N-isotope dilution technique. J. Anim. Sci. 68: 409–418. [PubMed] [Google Scholar]
- Deglaire A, Bos C, Tome D, Moughan PJ. 2009. Ileal digestibility of dietary protein in the growing pig and adult human. Brit. J. Nutr. 102: 1752–1759. [CrossRef] [Google Scholar]
- Delisle J, Amiot J, Brisson G-J, Lacroix M. 1983. Improvement of rapeseed protein nutritional value. Plant Food. Hum. Nutr. 33: 173–177. [CrossRef] [Google Scholar]
- Deparis V, Durrieu C, Schweizer M, et al. 2003. Promoting effect of rapeseed proteins and peptides on sf9 insect cell growth. Cytotechnology 42: 75–85. [CrossRef] [PubMed] [Google Scholar]
- EFSA, 2013. Scientific opinion on the safety of “rapeseed protein isolate” as a novel food ingredient. European Food Safety Authority panel on Dietetic Products, Nutrition and Allergies. EFSA J.11(10), 3420. Available from: www.efsa.europa.eu/sites/default/files/scientific_output/files/main_documents/3420.pdf. [Google Scholar]
- FAO. 2013. Dietary protein quality evaluation in human nutrition: Food & nutrition paper 92. Available from: www.Fao.Org/ag/humannutrition/35978-02317b979a686a57aa4593304ffc17f06.Pdf (last consult: 2016/20/03). [Google Scholar]
- FAO/WHO, 1991. Protein quality evaluation; FAO Food & Nutrition Paper 51. Available from http://apps.who.int/iris/bitstream/10665/38133/1/9251030979_eng.pdf (Last consult: 2016/20/03) [Google Scholar]
- Farges-Haddani B, Tessier B, Chenu S, et al. 2006. Peptide fractions of rapeseed hydrolysates as an alternative to animal proteins in cho cell culture media. Process Biochem. 41: 2297–2304. [CrossRef] [Google Scholar]
- Fleddermann M, Fechner A, Rößler A, et al. 2013. Nutritional evaluation of rapeseed protein compared to soy protein for quality, plasma amino acids, and nitrogen balance – a randomized cross-over intervention study in humans. Clin. Nutr. 32: 519–526. [CrossRef] [PubMed] [Google Scholar]
- Foegeding EA, Davis JP. 2011. Food protein functionality: A comprehensive approach. Food Hydrocolloid. 25: 1853–1864. [CrossRef] [Google Scholar]
- Folawiyo YL, Apenten RKO. 1997. The effect of heat- and acid-treatment on the structure of rapeseed albumin (napin). Food Chem. 58: 237–243. [CrossRef] [Google Scholar]
- Gerbanowski A, Malabat C, Rabiller C, Guéguen J. 1999. Grafting of aliphatic and aromatic probes on rapeseed 2S and 12S proteins: Influence on their structural and physicochemical properties. J. Agric. Food Chem. 47: 5218–5226. [CrossRef] [PubMed] [Google Scholar]
- Graf E, Empson KL, Eaton JW. 1987. Phytic acid: a natural antioxidant. J. Biol. Chem. 262: 11647–11650. [PubMed] [Google Scholar]
- Grala W, Verstegen MW, Jansman AJ, Huisman J, van Leeusen P. 1998. Ileal apparent protein and amino acid digestibilities and endogenous nitrogen losses in pigs fed soybean and rapeseed products. J. Anim. Sci. 76: 557–568. [PubMed] [Google Scholar]
- GRAS. 2010. GRAS Notice 327. GRAS notification for cruciferin-rich and napin-rich protein isolates derived from canola/rapeseed (Purateinr and SuperteinTM). Available from: www.Fda.Gov/food/foodingredientspackaging/generallyrecognizedassafegras/graslistings/default.Htm (last consult: 2016/27/03). [Google Scholar]
- Gruener L, Ismond MAH. 1997. Effects of acetylation and succinylation on the physicochemical properties of the canola 12S globulin. Part i. Food Chem. 60: 357–363. [CrossRef] [Google Scholar]
- Guo XF, Tian S, Small DM. 2010. Generation of meat-like flavourings from enzymatic hydrolysates of proteins from Brassica spp. Food Chem. 119: 167–172. [CrossRef] [Google Scholar]
- Hsieh K, Huang AH. 2004. Endoplasmic reticulum, oleosins, and oils in seeds and tapetum cells. Plant Physiol. 136: 3427–3434. [CrossRef] [PubMed] [Google Scholar]
- Hu ZY, Hua W, Zhang L, et al. 2013. Seed structure characteristics to form ultrahigh oil content in rapeseed. PloS One 8: e62099. [CrossRef] [PubMed] [Google Scholar]
- Jiang L, Phillips TE, Hamm CA, et al. 2001. The protein storage vacuole: A unique compound organelle. J. Cell Biol. 155: 991–1002. [CrossRef] [PubMed] [Google Scholar]
- Jiang P-L, Jauh G-Y, Wang C-S, Tzen JTC. 2008. A unique caleosin in oil bodies of lily pollen. Plant Cell Physiol. 49: 1390–1395. [CrossRef] [PubMed] [Google Scholar]
- Jolivet P, Boulard C, Bellamy A, et al. 2009. Protein composition of oil bodies from mature Brassica napus seeds. Proteomics 9: 3268–3284. [CrossRef] [PubMed] [Google Scholar]
- Jung R, Nam YW, Saalbach I, Muntz K, Nielsen NC. 1997. Role of the sulfhydryl redox state and disulfide bonds in processing and assembly of 11s seed globulins. Plant Cell 9: 2037–2050. [CrossRef] [PubMed] [Google Scholar]
- Jyothi TC, Singh SA, Rao AG. 2007. Conformation of napin (Brassica juncea) in salts and monohydric alcohols: Contribution of electrostatic and hydrophobic interactions. J. Agric. Food Chem. 55: 4229–4236. [CrossRef] [PubMed] [Google Scholar]
- Kim JHJ, Varankovich NV, Nickerson MT. 2016. The effect of ph on the gelling behaviour of canola and soy protein isolates. Food Res. Int. 81: 31–38. [CrossRef] [Google Scholar]
- Klockeman DM, Toledo R, Sims KA. 1997. Isolation and characterization of defatted canola meal protein. J. Agric. Food Chem. 45: 3867–3870. [CrossRef] [Google Scholar]
- Kodagoda LP, Nakai S, Powrie WD. 1973. Some functional properties of rapeseed protein isolates and concentrates. Can. Inst. Food Sci. Technol. J. 6: 266–269. [CrossRef] [Google Scholar]
- Krause J, Schwenke KD. 2001. Behaviour of a protein isolate from rapeseed (Brassica napus) and its main protein components – globulin and albumin – at air/solution and solid interfaces, and in emulsions. Colloids and Surfaces. B, Biointerfaces 21: 29–36. [CrossRef] [PubMed] [Google Scholar]
- Krause JP. 2002. Comparison of the effect of acylation and phosphorylation on surface pressure, surface potential and foaming properties of protein isolates from rapeseed (Brassica napus). Ind. Crop. Prod. 15: 221–228. [CrossRef] [Google Scholar]
- Krzyzaniak A, Burova T, Haertlé T, Barciszewski J. 1998. The structure and properties of napin-seed storage protein from rape (Brassica napus L.). Food/Nahrung 42: 201–204. [CrossRef] [Google Scholar]
- Larbrier ZM, Chagneau AM, Lessire M. 1991. Bioavailability of lysine in rapseed and soy bean meal determined by digestibility trials in cockerel and chick growth assays. Anim. Feed Sci. Tech. 35: 237–246. [CrossRef] [Google Scholar]
- Léger LW, Arntfield SD. 1993. Thermal gelation of the 12S canola globulin. J. Am. Oil Chem. Soc. 70: 853–861. [CrossRef] [Google Scholar]
- Lönnerdal B, Janson JC. 1972. Studies on Brassica seed proteins 1. The low molecular weight proteins in rapeseed. Isolation and characterization. Biochim. Biophys. Acta 278: 175–183. [CrossRef] [PubMed] [Google Scholar]
- Mailer RJ, McFadden A, Ayton J, Redden B. 2008. Anti-nutritional components, fibre, sinapine and glucosinolate content, in australian canola (Brassica napus L.) meal. J. Am. Oil Chem. Soc. 85: 937–944. [CrossRef] [Google Scholar]
- Malabat C, Atterby H, Chaudhry Q, Renard M, Guéguen J. 2003. Genetic variability of rapeseed protein composition. Proceedings of the 11. International Rapeseed Congress. Toward Enhanced Value of Cruciferous Oilseed Crops by Optimal Production and Use of the High Quality Seed Components, pp. 205–208. [Google Scholar]
- Manamperi WAR, Pryor SW. 2011. Properties of canola protein-based plastics and protein isolates modified using SDS and SDBS. J. Am. Oil Chem. Soc. 89: 541–549. [CrossRef] [Google Scholar]
- Manamperi WAR, Chang SKC, Ulven CA, Pryor SW. 2010. Plastics from an improved canola protein isolate: Preparation and properties. J. Am. Oil Chem. Soc. 87: 909–915. [CrossRef] [Google Scholar]
- Mansour EH, Dworschak E, Huszka T, Hovari J, Gergely A. 1996. Utilization of pumpkin seed and rapeseed proteins in the preparation of bologna type sausages. Acta Aliment. 25: 25–36. [Google Scholar]
- Mansour EH, Dworschak E, Pollhamer Z, Gergely A, Hovari J. 1999. Pumpkin and canola seed proteins and bread quality. Acta Aliment. 28: 59–70. [Google Scholar]
- Marczak ED, Usui H, Fujita H, et al. 2003. New antihypertensive peptides isolated from rapeseed. Peptides 24: 791–798. [CrossRef] [PubMed] [Google Scholar]
- Marinova KG, Basheva ES, Nenova B, et al. 2009. Physico-chemical factors controlling the foamability and foam stability of milk proteins: Sodium caseinate and whey protein concentrates. Food Hydrocoll. 23: 1864–1876. [CrossRef] [Google Scholar]
- Mariotti F, Hermeir D, Sarrat C, et al. 2008. Rapeseed protein inhibits the initiation of insulin resistance by a high saturated fat, high-sucrose diet in rats. Brit. J. Nutr. 100: 984–991. [CrossRef] [PubMed] [Google Scholar]
- Matthäus B. 1998. Effect of dehulling on the composition of antinutritive compounds in various cultivars of rapeseed. Lipid/Fett. 100: 295–301. [CrossRef] [Google Scholar]
- Matthäus B, Lösingand R, Fiebig HJ. 1995. Determination of inositol phosphates IP3 – IP6 in rapeseed and rapeseed meal by an HPLC method, part 2: Investigations of rapeseed and rapeseed meal and comparison with other methods. Lipid/Fett. 97: 372–374. [CrossRef] [Google Scholar]
- Mejia LA, Korgaonkar CK, Schweizer M, et al. 2009a. A 13-week sub-chronic dietary toxicity study of a cruciferin-rich canola protein isolate in rats. Food Chem. Toxicol. 47: 2645–2654. [CrossRef] [Google Scholar]
- Mejia LA, Korgaonkar CK, Schweizer M, et al. 2009b. A 13-week dietary toxicity study in rats of a napin-rich canola protein isolate. Regul. Toxicol. Pharmacol. 55: 394–402. [CrossRef] [Google Scholar]
- Mills ENC, Madsen C, Shewry PR, Wichers HJ. 2003. Food allergens of plant origin – their molecular and evolutionary relationships. Trends Food Sci. Technol. 14: 145–156. [CrossRef] [Google Scholar]
- Mitra P, Wanasundara JPD. 2013. Canola protein-based thermo plastic polymers. In Abstracts of 104th Annual meeting and expo of American Oil Chemists’ Society, Montreal, Canada. [Google Scholar]
- Mitra P, McIntosh TC, Wanasundara JPD. 2013. Unique functionalities of napin protein of canola: A comparative study. In Proceedings of Canadian Society of Bioengineering Conference, Saskatoon, Canada. [Google Scholar]
- Monsalve RI, Villalba M, Rodríguez, R. 2001. Allergy to mustard seeds: The importance of 2S albumins as food allergens. Internet. Symp. Food Allergens 3: 57–69. [Google Scholar]
- Muren E, Ek B, Bjork I, Rask L. 1996. Structural comparison of the precursor and the mature form of napin, the 2S storage protein in Brassica napus. Eur. J. Biochem. 242: 214–219. [Google Scholar]
- Murray ED, Arntfield SD, Ismond MAH. 1985. The influence of processing parameters on food protein functionality ii. Factors affecting thermal properties as analyzed by differential scanning calorimetry. Can. Inst. Food Sci. Technol. J. 18: 158–162. [CrossRef] [Google Scholar]
- Naczk M, Amarowicz R, Sullivan A, Shahidi F. 1998. Current research developments on polyphenolics of rapeseed/canola: A review. Food Chem. 62: 489–502. [CrossRef] [Google Scholar]
- Newkirk RW, Classen HL, Scott TA, Edney MJ. 2003. The digestibility and content of amino acids in toasted and non-tosted canola meals. Can. J. Anim. Sci. 83: 131–139. [CrossRef] [Google Scholar]
- Nitecka E, Schwenke KD. 1986. Functional properties of plant proteins. Part 8. Effect of succinylation on some functional properties of the main globulin fraction from rapeseed (Brassica napus L.). Food / Nahrung. 30: 969–974. [CrossRef] [Google Scholar]
- Nitecka E, Raab B, Schwenke KD. 1986. Chemical modification of proteins. Part 12. Effect of succinylation on some physico-chemical and functional properties of the albumin fraction from rapeseed (Brassica napus L.). Food / Nahrung. 30: 975–985. [CrossRef] [Google Scholar]
- Noi, G,Kapel R, Rondags E, Marc I. 2012. Selective extraction, structural characterisation an antifungal activity assessment of napins from an industrial rapeseed meal. Food Chem. 134: 2149–2155. [CrossRef] [PubMed] [Google Scholar]
- Ochodzki P, Rakowska M, Bjergegaard C, Sorensen H. 1995. Studies on enzymatic fractional, chemical composition and biological effects of dietary fibre in rape seed (Brassica napus L.) 1. Chemical composition of seeds and characteristics of soluble and insoluble dietary fibre of spring and winter type variety. J. Anim. Feed Sci. 4: 127–138. [Google Scholar]
- OECD-FAO. 2015. Agricultural outlook 2015-2024. Available from www.Fao.Org/3/a-i4738e.Pdf (last consult: 2016/22/03). [Google Scholar]
- Pedroche J, Yust MM, Megias C, et al. 2004. Utilization of rapeseed protein isolates for production of peptides with angiotensin 1-converting enzyme (ACE)-inhibitory activity. Grasas y Aceites 55: 354–358. [Google Scholar]
- Plietz P, Damaschun G, Muller JJ, Schwenke KD. 1983. The structure of 11S globulins from sunflower and rapeseed. A small-angle x-ray scattering study. Eur. J. Biochem. 130: 315–320. [CrossRef] [PubMed] [Google Scholar]
- Poikonen S, Puumalainen TJ, Kautiainen H, Palosuo T, Reunala T, Turjanmaa K. 2008. Sensitization to turnip rape and oilseed rape in children with atopic dermatitis: A case-control study. Pediatr. Allergy Immunol. 19: 408–411. [CrossRef] [PubMed] [Google Scholar]
- Puumalainen TJ, Poikonen S, Kotovuori A, et al. 2006. Napins, 2S albumins, are major allergens in oilseed rape and turnip rape. J. Allergy Clin. Immunol. 117: 426–432. [CrossRef] [PubMed] [Google Scholar]
- Rico M, Bruix M, Gonzalez C, Monsalve RI, Rodriguez R. 1996. 1H NMR assignment and global fold of napin BnIb, a representative 2S albumin seed protein. Biochemistry. 35: 15672–15682. [CrossRef] [PubMed] [Google Scholar]
- Rivera D, Rommi K, Fernandes MM, Lantto R, Tzanov T. Enzyme-aided processing of rapeseed oil industry by-products into added value ingredients for food, cosmetic and pharmaceutical applications. In: White M (ed.). Rapeseed: Chemical composition, production and health benefits. NY. USA: Nova Science Publishers, 2016. [Google Scholar]
- Rutherfurd SM, Fanning AC, Miller BJ, Moughan PJ. 2015. Protein digestibility-corrected amino acid scores and digestible indispensable amino acid scores differentially describe protein quality in growing male rats. J. Nutr. 145: 372–379. [Google Scholar]
- Sánchez-Vioque R, Bagger CL, Rabiller C, Guéguen J. 2001. Foaming properties of acylated rapeseed (Brassica napus L.) hydrolysates. J. Colloid Interf. Sci. 244: 386–393. [CrossRef] [Google Scholar]
- Sandberg A-S. In vitro and in vivo degradation of phytate. In: Reddy NR, Sathe SK (eds.). Food phytates. Boca Raton: CRC Press, 2002. [Google Scholar]
- Savoie L, Galibois I, Parent G, Charbonneau R. 1988. Sequential release of amino acids and peptides during in vitro digestion of casein and rapeseed proteins. Nutr. Res. 8: 1319–1326. [CrossRef] [Google Scholar]
- Schwartz J-M, Solé V, Guéguen J, Ropers M-H, Riaublanc A, Anton M. 2015. Partial replacement of β-casein by napin, a rapeseed protein, as ingredient for processed foods: Thermoreversible aggregation. LWT – Food Sci. Technol. 63: 562–568. [CrossRef] [Google Scholar]
- Schwenke KD, Raab B, Linow KJ, Pahtz W, Uhlig J. 1981. Isolation of the 12S globulin from rapeseed (Brassica napus L.) and characterization as a “neutral" protein. On seed proteins. Part 13. Nahrung 25: 271–280. [CrossRef] [PubMed] [Google Scholar]
- Schwenke KD, Dahme A, Wolter T. 1998. Heat-induced gelation of rapeseed proteins: Effect of protein interaction and acetylation. J. Am. Oil Chem. Soc. 75: 83–87. [CrossRef] [Google Scholar]
- Shewry PR, Napier JA, Tatham AS. 1995. Seed storage proteins: Structures and biosynthesis. The Plant Cell. 7: 945–956. [Google Scholar]
- Shi W, Dumont MJ. 2014. Processing and physical properties of canola protein isolate-based films. Indus Crop. Prod. 52: 269–277. [CrossRef] [Google Scholar]
- Shi W, Dumont MJ, Ly EB. 2014. Synthesis and properties of canola protein-based superabsorbent hydrogels. Euro. Polym. J. 54: 172–180. [CrossRef] [Google Scholar]
- Sjodahl S, Rodin J, Rask L. 1991. Characterization of the 12S globulin complex of Brassica napus. Evolutionary relationship to other 11–12S storage globulins. Eur. J. Biochem. 196: 617–621. [CrossRef] [PubMed] [Google Scholar]
- Stone AK, Cheung L, Chang C, Nickerson MT. 2013. Formation and functionality of soluble and insoluble electrostatic complexes within mixtures of canola protein isolate and (κ-, ι- and λ-type) carrageenan. Food Res. Int. 54: 195–202. [CrossRef] [Google Scholar]
- Stone AK, Teymurova A, Nickerson MT. 2014. Formation and functional attributes of canola protein isolate-gum arabic electrostatic complexes. Food Biophys. 9: 203–212. [CrossRef] [Google Scholar]
- Tan SH, Mailer RJ, Blanchard CL, Agboola SO. 2011. Extraction and characterization of protein fractions from Australian canola meals. Food Res. Int. 44: 1075–1082. [CrossRef] [Google Scholar]
- Tan SH, Mailer RJ, Blanchard CL, Agboola SO. 2014a. Emulsifying properties of proteins extracted from australian canola meal. LWT – Food Sci. Technol. 57: 376–382. [CrossRef] [Google Scholar]
- Tan SH, Mailer RJ, Blanchard CL, Agboola SO, Day L. 2014b. Gelling properties of protein fractions and protein isolate extracted from australian canola meal. Food Res. Int. 62: 819–828. [CrossRef] [Google Scholar]
- Tandang-Silvas MRG, Fukuda T, Fukuda C, et al. 2010. Conservation and divergence on plant seed 11S globulins based on crystal structures. Biochim. Biophys. Acta (BBA) – Proteins and Proteomics. 1804: 1432–1442. [CrossRef] [Google Scholar]
- Thiyam-Holländer U, Aladedunye F, Logan A, Yang H, Diehl BWK. 2014. Identification and quantification of canolol and related sinapate precursors in indian mustard oils and canadian mustard products. Eur. J. Lipid Sci. Technol. 116: 1664–1674. [CrossRef] [Google Scholar]
- Thompson LU, Liu RFK, Jones JD. 1982. Functional properties and food applications of rapeseed protein concentrate. J. Food Sci. 47: 1175–1180. [CrossRef] [Google Scholar]
- Tzen JTC. 2012. Integral proteins in plant oil bodies. ISRN Botany 2012: 16. [Google Scholar]
- Tzen JTC, Cao Y, Laurent P, Ratnayake C, Huang AHC. 1993. Lipids, proteins, and structure of seed oil bodies from diverse species. Plant Physiol. 101: 267–276. [PubMed] [Google Scholar]
- Tzeng YM, Diosady LL, Rubin LJ. 1988. Preparation of rapeseed protein isolates using ultrafiltration, precipitation and diafiltration1. Can. Inst. Food Sci. Technol. J. 21: 419–424. [CrossRef] [Google Scholar]
- Uruakpa FO, Arntfield SD. 2004. Rheological characteristics of commercial canola protein isolate-kappa-carrageenan systems. Food Hydrocoll. 18: 419–427. [CrossRef] [Google Scholar]
- Uruakpa FO, Arntfield SD. 2005. The physico-chemical properties of commercial canola protein isolate-guar gum gels. Int. J. Food Sci. Technol. 40: 643–653. [CrossRef] [Google Scholar]
- Uruakpa FO, Arntfield SD. 2006. Surface hydrophobicity of commercial canola proteins mixed with κ-carrageenan or guar gum. Food Chem. 95: 255–263. [CrossRef] [Google Scholar]
- Verghese M, Rao DR, Chawan CB, Walker LT, Shackelford L. 2006. Anticarcinogenic effect of phytic acid (IP6): apoptosis as a possible mechanism of action. LWT 39: 1093–1098. [CrossRef] [Google Scholar]
- Von Der Haar D, Müller K, Bader-Mittermaier S, Eisner P. 2014. Rapeseed proteins – production methods and possible application ranges. OCL 21: D104. [CrossRef] [EDP Sciences] [Google Scholar]
- Wanasundara JPD. 2011. Proteins of Brassicaceae oilseeds and their potential as a plant protein source. Crit. Rev. Food Sci. Nutr. 51: 635–677. [CrossRef] [PubMed] [Google Scholar]
- Wanasundara JPD, McIntosh TC. 2013. Process of aqueous protein extraction from Brassicaceae oilseeds. US Patent 8,557963B2. [Google Scholar]
- Wanasundara JPD, Abeysekara SJ, McIntosh TC, Falk KC. 2012. Solubility differences of major storage proteins of Brassicaceae oilseeds. J. Am. Oil Chem. Soc. 89: 869–881. [CrossRef] [Google Scholar]
- Wang C, Wu J, Bernard GM. 2014. Preparation and characterization of canola protein isolate-poly(glycidyl methacrylate) conjugates: A bio-based adhesive. Indus. Crop. Prod. 57: 124–131. [CrossRef] [Google Scholar]
- WHO/FAO/UNU, 2007. Protein and amino acid requirements in human nutrition. Report of a joint FAO/WHO/UNU expert consultation. WHO Technical Report Series 935. Available from: http://www.who.int/nutrition/publications/nutrientrequirements/WHO_TRS_935/en/ (Last consult:2016/20/03). [Google Scholar]
- Wijesundera C, Boiteau T, Xu X, Shen Z, Watkins P, Logan A. 2013. Stabilization of fish oil-in-water emulsions with oleosin extracted from canola meal. J. Food Sci. 78: C1340–C1347. [CrossRef] [PubMed] [Google Scholar]
- Wittaya T. Protein-based edible films: Characteristics and improvement of properties. In: Eissa AA (ed.). Structure and function of food engineering. InTech Open Science, 2012, pp. 978–953. [Google Scholar]
- Wu J, Muir AD. 2008. Comparative structural, emulsifying, and biological properties of 2 major canola proteins, cruciferin and napin. J. Food Sci. 73: C210–216. [CrossRef] [PubMed] [Google Scholar]
- Yang C, Wang Y, Vasanthan T, Chen L. 2014. Impacts of pH and heating temperature on formation mechanisms and properties of thermally induced canola protein gels. Food Hydrocoll. 40: 225–236. [CrossRef] [Google Scholar]
- Yoshie-Stark Y, Wada Y, Schott M, Wäsche A. 2006. Functional and bioactive properties of rapeseed protein concentrates and sensory analysis of food application with rapeseed protein concentrates. LWT – Food Sci. Technol. 39: 503–512. [CrossRef] [Google Scholar]
- Yust MM, Pedroche J, Megıias C, et al. 2004. Rapeseed protein hydrolysates: A source of HIV protease peptide inhibitors. Food Chem. 87: 387–392. [CrossRef] [Google Scholar]
- Zhang SB, Wang Z, Xu SY. 2008. Antioxidant and antithrombotic activities of rapeseed peptides. J. Am. Oil Chem. Soc. 85: 521–527. [CrossRef] [Google Scholar]
- Zheng C, Yang M, Zhou Q, Liu C-S, Huang F-H. 2014. Changes in the content of canolol and total phenolics, oxidative stability of rapeseed oil during accelerated storage. Eur. J. Lipid Sci. Technol. 116: 1675–1684. [CrossRef] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.