Open Access
Numéro |
OCL
Volume 23, Numéro 1, January-February 2016
|
|
---|---|---|
Numéro d'article | D118 | |
Nombre de pages | 10 | |
Section | Dossier: Lipids and Brain / Lipides et cerveau | |
DOI | https://doi.org/10.1051/ocl/2015055 | |
Publié en ligne | 27 novembre 2015 |
- Andersson DC, Marks AR. 2010. Fixing ryanodine receptor Ca2+ leak – a novel therapeutic strategy for contractile failure in heart and skeletal muscle. Drug Discov. Today: Dis. Mech. 7: e151–e157. [CrossRef] [Google Scholar]
- Barbosa M, Collado-Gonzalez J, Andrade PB et al. 2015. Nonenzymatic alpha-Linolenic Acid Derivatives from the Sea: Macroalgae as Novel Sources of Phytoprostanes. J. Agric. Food Chem. 63: 6466–6474. [CrossRef] [PubMed] [Google Scholar]
- Barden A, Beilin LJ, Ritchie J, Croft KD, Walters BN, Michael CA. 1996. Plasma and urinary 8-iso-prostane as an indicator of lipid peroxidation in pre-eclampsia and normal pregnancy. Clin. Sci. (Lond) 91: 711–718. [CrossRef] [PubMed] [Google Scholar]
- Barden AE, Mori TA, Dunstan JA, et al. 2004. Fish oil supplementation in pregnancy lowers F2–isoprostanes in neonates at high risk of atopy. Free Radic. Res. 38: 233–239. [CrossRef] [PubMed] [Google Scholar]
- Barden A, Croft K, Durand T, Guy A, Mueller M-J, Mori TJ. 2009. F1-phytoprostanes following ALA supplementation in men: A randomised controlled trial. J. Nutr. 10: 1890–1895. [CrossRef] [Google Scholar]
- Barden AE, Corcoran TB, Mas E, et al. 2012. Is There a Role for Isofurans and Neuroprostanes in Pre-Eclampsia and Normal Pregnancy? Antioxidants Redox Signaling 16: 165–169. [CrossRef] [Google Scholar]
- Benndorf RA, Schwedhelm E, Gnann A, Taheri R, Kom G, Didie M, et al. 2008. Isoprostanes Inhibit Vascular Endothelial Growth Factor-Induced Endothelial Cell Migration, Tube Formation, and Cardiac Vessel Sprouting In Vitro, As Well As Angiogenesis In Vivo via Activation of the Thromboxane A2 Receptor: A Potential Link Between Oxidative Stress and Impaired Angiogenesis. Circ. Res. 103: 1037–1046. [CrossRef] [PubMed] [Google Scholar]
- Brinkmann Y, Oger C, Guy A, Durand T, Galano JM. 2010. Total synthesis of 15-D2t- and 15-epi-15E2t-Isoprostanes. J. Org. Chem. 75: 2411–2414. [CrossRef] [PubMed] [Google Scholar]
- Brown HA, Marnett LJ. 2011. Lipid biochemistry, metabolism, and signaling. Chem. Rev. 111: 5817–6512. [CrossRef] [PubMed] [Google Scholar]
- Carrasco-DelAmor AM, Collado-Gonzalez J, Aguayo E, Guy A, Galano JM, Durand T, Gil-Izquierdo A. 2015. Phytoprostanes in almonds: identification, quantification, and impact of cultivar and type of cultivation. RSC Adv. 5: 51233–51241. [CrossRef] [Google Scholar]
- Colavitti R, Finkel T. 2005. Reactive Oxygen Species as Mediators of Cellular Senescence. IUBMB Life 57: 277–281. [CrossRef] [PubMed] [Google Scholar]
- Collado-Gonzalez J, Medina S, Durand T, et al. 2015. New UHPLC/QqQ-MS/MS method for quantitative and qualitative determination of free phytoprostanes in foodstuffs of commercial olive and sunflower oils. Food Chem. 178: 212–220. [CrossRef] [PubMed] [Google Scholar]
- Conconi A, Miquel M, Browse JA, Ryan CA. 1996. Intracellular levels of free linolenic and linoleic acid increase in tomato leaves in response to wounding. Plant Physiol. 111: 797–803. [PubMed] [Google Scholar]
- Corcoran TB, Mas E, Barden AE, et al. 2011. Are Isofurans and Neuroprostanes Increased After Subarachnoid Hemorrhage and Traumatic Brain Injury? Antioxidants Redox Signal. 15: 2663–2667. [CrossRef] [Google Scholar]
- De Felice C, Signorini C, Durand T, et al. 2011. F2-dihomo-isoprostanes as potential early biomarkers of lipid oxidative damage in Rett syndrome. J. Lipid Res. 52: 2287–2297 [CrossRef] [PubMed] [Google Scholar]
- De Felice C, Signorini C, Leoncini S, et al. 2012. The Role of Oxidative Stress in Rett Syndrome: an overview. Ann. NY Acad. Sci. 1259: 121–135. [CrossRef] [Google Scholar]
- De La Torre A, Lee YY, Oger C, et al. 2014. Synthesis, discovery, and quantitation of dihomo-isofurans: Biomarkers for in vivo adrenic acid peroxidation. Angew. Chem. Int. Ed. Engl. 53: 6249–6252. [CrossRef] [PubMed] [Google Scholar]
- De La Torre A, Lee YY, Mazzoni A, et al. 2015. Total syntheses and in vivo quantitation of novel neurofuran and dihomo-isofuran derived from docosahexaenoic acid and adrenic acid. Chemistry A Eur. J. 21: 2442–2446. [CrossRef] [Google Scholar]
- Farias SE, Basselin M, Chang L, Heidenreich KA, Rapoport SI, Murphy RC. 2008. Formation of eicosanoids, E2/D2 isoprostanes, and docosanoids following decapitation-induced ischemia, measured in high-energy-microwaved rat brain. J. Lipid Res. 49: 1990–2000. [CrossRef] [PubMed] [Google Scholar]
- Fessel JP, Porter NA, Moore KP, Sheller JR, Roberts LJ. 2002. Discovery of lipid peroxidation products formed in vivo with a substituted tetrahydrofuran ring (isofurans) that are favored by increased oxygen tension. Proc. Natl. Acad. Sci. U.S.A. 99: 16713–16718. [CrossRef] [Google Scholar]
- Galano J-M, Mas E, Barden A, et al. 2013. Isoprostanes and neuroprostanes: Total synthesis, biological activity and biomarkers of oxidative stress in humans. Prostaglandins Other Lipid Mediat. 107: 95–102. [CrossRef] [PubMed] [Google Scholar]
- Galano J-M, Lee JC-Y, Gladine C, et al. 2015. Non-enzymatic cyclic oxygenated metabolites of adrenic, docosahexaenoic, eicosapentaenoic and α-linolenic acids; bioactivities and potential use as biomarkers. Biochim. Biophys. Acta 1851: 446–455. [Google Scholar]
- Gilles S, Mariani V, Bryce M, et al. 2009. Pollen-Derived E1-Phytoprostanes Signal via PPAR-{gamma}and NF-{kappa}B-Dependent Mechanisms. J. Immunol. 182: 6653–6658. [CrossRef] [PubMed] [Google Scholar]
- GISSI-Prevenzione Investigators. 1999. Lancet 354: 447–455. [Google Scholar]
- Gladine C, Newman JW, Durand T, et al. 2014. Lipid Profiling following Intake of the Omega 3 Fatty Acid DHA Identifies the Peroxidized Metabolites F4-Neuroprostanes as the Best Predictors of Atherosclerosis Prevention. PLoS One 9: e89393. [CrossRef] [PubMed] [Google Scholar]
- Gutermuth J, Bewersdorff M, Traidl-Hoffmann C, et al. 2007. Immunomodulatory effects of aqueous birch pollen extracts and phytoprostanes on primary immune responses in vivo. J. Allergy Clin. Immunol. 120: 293–299. [CrossRef] [Google Scholar]
- Hou X, Roberts LJ, Gobeil F, et al. 2004. Isomer-specific contractile effects of a series of synthetic F2-isoprostanes on retinal and cerebral microvasculature. Free Radic. Biol. Med. 36: 163–172 [CrossRef] [PubMed] [Google Scholar]
- Hsieh YP, Lin CL, Shiue AL, et al. 2009. Correlation of F4-neuroprostanes levels in cerebrospinal fluid with outcome of aneurysmal subarachnoid hemorrhage in humans. Free Radic. Biol. Med. 47: 814–824. [CrossRef] [PubMed] [Google Scholar]
- Il’yasova D,Ivanova A, Morrow JD, Cesari M, Pahor M. 2008. Correlation between two markers of inflammation, serum C-reactive protein and interleukin 6, and indices of oxidative stress in patients with high risk of cardiovascular disease. Biomarkers 13: 41–51. [CrossRef] [PubMed] [Google Scholar]
- Imbusch R, Mueller MJ. 2000. Formation of isoprostane F(2)-like compounds (phytoprostanes F(1)) from alpha-linolenic acid in plants. Free Radic. Biol. Med. 28: 720–726. [CrossRef] [PubMed] [Google Scholar]
- Jahn U, Galano JM, Durand T. 2008. Beyond prostaglandins–chemistry and biology of cyclic oxygenated metabolites formed by free-radical pathways from polyunsaturated fatty acids. Angew. Chem. Int. Ed. Engl. 47: 5894–5955. [CrossRef] [PubMed] [Google Scholar]
- Jamil J, Wright A, Harrison N, et al. 2012. Regulation of [(3)H]d-aspartate release by the 5-F(2t)-isoprostane and its 5-epimer in isolated bovine retina. Neurochem. Res. 37: 574–582. [CrossRef] [PubMed] [Google Scholar]
- Janssen LJ. 2008. Isoprostanes and lung vascular pathology. Am. J. Respir. Cell Mol. Biol. 39: 383–389. [CrossRef] [PubMed] [Google Scholar]
- Judé S, Bedut S, Roger S, et al. 2003. Peroxidation of docosahexaenoic acid is responsible for its effects on I TO and I SS in rat ventricular myocytes. Br. J. Pharmacol. 139: 816–822 [CrossRef] [PubMed] [Google Scholar]
- Le Guennec J-Y, Galano JM, Oger C, et al. 5 December 2012. Methods and pharmaceutical composition for the treatment and prevention of cardiac arrhythmias. European patent EP12306519.3. [Google Scholar]
- Loeffler C, Berger S, Guy A, et al. 2005. B1-phytoprostanes trigger plant defense and detoxification responses. Plant Physiol. 137: 328–340. [CrossRef] [PubMed] [Google Scholar]
- Magder S. 2006. Reactive oxygen species: toxic molecules or spark of life ? Critical Care 10: 208–215. [CrossRef] [Google Scholar]
- Mariani V, Gilles S, Jakob T, et al. 2007. Immunomodulatory mediators from pollen enhance the migratory capacity of dendritic cells and license them for Th2 attraction. J. Immunol. 178: 7623–7631. [CrossRef] [PubMed] [Google Scholar]
- Mas E, Michel F, Guy A, et al. 2008. Quantification of urinary F2-Isoprostane with 4(RS)-F4t-Neuroprostane as an internal standard using gas chromatography-mass spectrometry. J. Chromatrogr. B 10: 5087–5090. [Google Scholar]
- Michel F, Bonnefont-Rousselot D, Mas E, Drai J, Thérond P. 2008. Biomarkers of lipid peroxidation: analytical aspects. Ann. Biol. Clin. 66: 605–620. [Google Scholar]
- Milne GL, Yin H, Brooks JD, Sanchez S, Roberts II LJ, Morrow JD. 2007. Quantification of F2-isoprostanes in biological fluids and tissues as a measure of oxidant stress. Methods Enzymol. 433: 113–126. [CrossRef] [PubMed] [Google Scholar]
- Milne GL, Yin H, Hardy KD, Davies SS, Roberts LJ. 2011. Isoprostane Generation and Function. Chem. Rev. 111: 5973–5996. [CrossRef] [PubMed] [Google Scholar]
- Minghetti L, Salvi R, Lavinia Salvatori M, Ajmone-Cat MA, et al. 2014. Nonenzymatic oxygenated metabolites of α-linolenic acid B1- and L1-phytoprostanes protect immature neurons from oxidant injury and promote differentiation of oligodendrocyte progenitors through PPAR-Î3 activation. Free Radic. Biol. Med. 73: 41–50. [CrossRef] [PubMed] [Google Scholar]
- Morrow JD, Roberts II LJ. 1994. Mass spectrometry of prostanoids: F2-isoprostanes produced by non-cyclooxygenase free radical-catalyzed mechanism. Methods Enzymol. 233: 163–174. [CrossRef] [PubMed] [Google Scholar]
- Morrow JD, Hill KE, Burk RF, Nammour TM, Badr KF, Roberts II LJ. 1990. A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism. Proc. Natl. Acad. Sci. USA 87: 9383–9387. [CrossRef] [Google Scholar]
- Nourooz-Zadeh J, Liu EH, Anggard E, Halliwell B. 1998. F4-isoprostanes: a novel class of prostanoids formed during peroxidation of docosahexaenoic acid (DHA). Biochem. Biophys. Res. Commun. 242: 338–344 [CrossRef] [PubMed] [Google Scholar]
- Oger C, Brinkmann Y, Bouazzaoui S, Durand T, Galano J-M. 2008. Stereocontrolled Access to Isoprostanes via a Bicyclo[3.3.0]octene Framework. Org. Lett. 10: 5087–5090. [CrossRef] [PubMed] [Google Scholar]
- Oger C, Bultel-Poncé V, Guy A, et al. 2010. The Handy Use of Brown’s P2-Ni Catalyst for a Skipped Diyne Deuteration: Application to the Synthesis of a [D(4)]-Labeled F(4t)-Neuroprostane. Chemistry A Eur. J. 16: 13976–13980. [CrossRef] [Google Scholar]
- Oger C, Bultel-Poncé V, Guy A, Durand T, Galano J-M. 2012. Total Syntheses of Isoprostanes Derived from Adrenic Acid and EPA. Eur. J. Org. Chem. 2012: 2621–2634. [CrossRef] [Google Scholar]
- Opere CA, Zheng W, Huang J, Adewale A, Kruglet M, Ohia SE. 2005. Dual effects of isoprostanes on the release of [3H]D-aspartate from isolated bovine retinae: Role of arachidonic acid metabolites. Neurochem. Res. 30: 129–137. [CrossRef] [PubMed] [Google Scholar]
- Roberts II LJ, Montine TJ, Markesbery WR, et al. 1998. Formation of isoprostane-like compounds (neuroprostanes) in vivo from docosahexaenoic acid. J. Biol. Chem. 273: 13605-13612. [CrossRef] [PubMed] [Google Scholar]
- Roy J, Oger C, Thireau J, et al. 2015. Nonenzymatic lipid mediators, neuroprostanes, exert the antiarrhythmic properties of docosahexaenoic acid. Free Radic. Biol. Med. 86: 269–278. [CrossRef] [PubMed] [Google Scholar]
- Solberg R, Longini M, Proietti F, Vezzosi P, Saugstad OD, Buonocore G. 2012. Resuscitation with supplementary oxygen induces oxidative injury in the cerebral cortex. Free Radic. Biol. Med. 53: 1061–1067. [CrossRef] [PubMed] [Google Scholar]
- Song W-L, Lawson JA, Reilly D, et al. 2008. Neurofurans, Novel Indices of Oxidant Stress Derived from Docosahexaenoic Acid. J. Biol. Chem. 283: 6–16. [CrossRef] [PubMed] [Google Scholar]
- Stafforini DM, Sheller JR, Blackwell TS, et al. 2006. Release of Free F2-isoprostanes from Esterified Phospholipids Is Catalyzed by Intracellular and Plasma Platelet-activating Factor Acetylhydrolases. J. Biol. Chem. 281: 4616–4623. [CrossRef] [PubMed] [Google Scholar]
- Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Wilztum JL. 1989. Beyond cholesterol: modifications of low-density lipoprotein that increase its atherogenecity. N. Engl. J. Med. 320: 915–924. [Google Scholar]
- Thoma I, Loeffler C, Sinha AK, et al. 2003. Cyclopentenone isoprostanes induced by reactive oxygen species trigger defense gene activation and phytoalexin accumulation in plants. Plant J. 34: 363–375. [CrossRef] [PubMed] [Google Scholar]
- Traidl-Hoffmann C, Mariani V, Hochrein H, et al. 2005. Pollen-associated phytoprostanes inhibit dendritic cell interleukin-12 production and augment T helper type 2 cell polarization. J. Exp. Med. 201: 627–636. [CrossRef] [PubMed] [Google Scholar]
- VanRollins M, Woltjer RL, Yin H, Morrow JD, Montine TJ. 2008. F2-Dihomo-isoprostanes arise from free radical attack on adrenic acid. J. Lipid Res. 49: 995–1005. [CrossRef] [PubMed] [Google Scholar]
- Vigor C, Bertrand-Michel J, Pinot E, et al. 2014. Non-enzymatic lipid oxidation products in biological systems: Assessment of the metabolites from polyunsaturated fatty acids. J. Chromatog. B 964: 65–78. [CrossRef] [Google Scholar]
- Zhao M, Destache C, Ohia S, Opere C. 2009. Role of prostanoid production and receptors in the regulation of retinal endogenous amino acid neurotransmitters by 8-isoprostaglandin ex vivo. Neurochem. Res. 34: 2170–2180. [CrossRef] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.