Open Access
Issue
OCL
Volume 23, Number 1, January-February 2016
Article Number D118
Number of page(s) 10
Section Dossier: Lipids and Brain / Lipides et cerveau
DOI https://doi.org/10.1051/ocl/2015055
Published online 27 November 2015
  • Andersson DC, Marks AR. 2010. Fixing ryanodine receptor Ca2+ leak – a novel therapeutic strategy for contractile failure in heart and skeletal muscle. Drug Discov. Today: Dis. Mech. 7: e151–e157. [CrossRef] [Google Scholar]
  • Barbosa M, Collado-Gonzalez J, Andrade PB et al. 2015. Nonenzymatic alpha-Linolenic Acid Derivatives from the Sea: Macroalgae as Novel Sources of Phytoprostanes. J. Agric. Food Chem. 63: 6466–6474. [CrossRef] [PubMed] [Google Scholar]
  • Barden A, Beilin LJ, Ritchie J, Croft KD, Walters BN, Michael CA. 1996. Plasma and urinary 8-iso-prostane as an indicator of lipid peroxidation in pre-eclampsia and normal pregnancy. Clin. Sci. (Lond) 91: 711–718. [CrossRef] [PubMed] [Google Scholar]
  • Barden AE, Mori TA, Dunstan JA, et al. 2004. Fish oil supplementation in pregnancy lowers F2–isoprostanes in neonates at high risk of atopy. Free Radic. Res. 38: 233–239. [CrossRef] [PubMed] [Google Scholar]
  • Barden A, Croft K, Durand T, Guy A, Mueller M-J, Mori TJ. 2009. F1-phytoprostanes following ALA supplementation in men: A randomised controlled trial. J. Nutr. 10: 1890–1895. [CrossRef] [Google Scholar]
  • Barden AE, Corcoran TB, Mas E, et al. 2012. Is There a Role for Isofurans and Neuroprostanes in Pre-Eclampsia and Normal Pregnancy? Antioxidants Redox Signaling 16: 165–169. [CrossRef] [Google Scholar]
  • Benndorf RA, Schwedhelm E, Gnann A, Taheri R, Kom G, Didie M, et al. 2008. Isoprostanes Inhibit Vascular Endothelial Growth Factor-Induced Endothelial Cell Migration, Tube Formation, and Cardiac Vessel Sprouting In Vitro, As Well As Angiogenesis In Vivo via Activation of the Thromboxane A2 Receptor: A Potential Link Between Oxidative Stress and Impaired Angiogenesis. Circ. Res. 103: 1037–1046. [CrossRef] [PubMed] [Google Scholar]
  • Brinkmann Y, Oger C, Guy A, Durand T, Galano JM. 2010. Total synthesis of 15-D2t- and 15-epi-15E2t-Isoprostanes. J. Org. Chem. 75: 2411–2414. [CrossRef] [PubMed] [Google Scholar]
  • Brown HA, Marnett LJ. 2011. Lipid biochemistry, metabolism, and signaling. Chem. Rev. 111: 5817–6512. [CrossRef] [PubMed] [Google Scholar]
  • Carrasco-DelAmor AM, Collado-Gonzalez J, Aguayo E, Guy A, Galano JM, Durand T, Gil-Izquierdo A. 2015. Phytoprostanes in almonds: identification, quantification, and impact of cultivar and type of cultivation. RSC Adv. 5: 51233–51241. [CrossRef] [Google Scholar]
  • Colavitti R, Finkel T. 2005. Reactive Oxygen Species as Mediators of Cellular Senescence. IUBMB Life 57: 277–281. [CrossRef] [PubMed] [Google Scholar]
  • Collado-Gonzalez J, Medina S, Durand T, et al. 2015. New UHPLC/QqQ-MS/MS method for quantitative and qualitative determination of free phytoprostanes in foodstuffs of commercial olive and sunflower oils. Food Chem. 178: 212–220. [CrossRef] [PubMed] [Google Scholar]
  • Conconi A, Miquel M, Browse JA, Ryan CA. 1996. Intracellular levels of free linolenic and linoleic acid increase in tomato leaves in response to wounding. Plant Physiol. 111: 797–803. [PubMed] [Google Scholar]
  • Corcoran TB, Mas E, Barden AE, et al. 2011. Are Isofurans and Neuroprostanes Increased After Subarachnoid Hemorrhage and Traumatic Brain Injury? Antioxidants Redox Signal. 15: 2663–2667. [CrossRef] [Google Scholar]
  • De Felice C, Signorini C, Durand T, et al. 2011. F2-dihomo-isoprostanes as potential early biomarkers of lipid oxidative damage in Rett syndrome. J. Lipid Res. 52: 2287–2297 [CrossRef] [PubMed] [Google Scholar]
  • De Felice C, Signorini C, Leoncini S, et al. 2012. The Role of Oxidative Stress in Rett Syndrome: an overview. Ann. NY Acad. Sci. 1259: 121–135. [CrossRef] [Google Scholar]
  • De La Torre A, Lee YY, Oger C, et al. 2014. Synthesis, discovery, and quantitation of dihomo-isofurans: Biomarkers for in vivo adrenic acid peroxidation. Angew. Chem. Int. Ed. Engl. 53: 6249–6252. [CrossRef] [PubMed] [Google Scholar]
  • De La Torre A, Lee YY, Mazzoni A, et al. 2015. Total syntheses and in vivo quantitation of novel neurofuran and dihomo-isofuran derived from docosahexaenoic acid and adrenic acid. Chemistry A Eur. J. 21: 2442–2446. [CrossRef] [Google Scholar]
  • Farias SE, Basselin M, Chang L, Heidenreich KA, Rapoport SI, Murphy RC. 2008. Formation of eicosanoids, E2/D2 isoprostanes, and docosanoids following decapitation-induced ischemia, measured in high-energy-microwaved rat brain. J. Lipid Res. 49: 1990–2000. [CrossRef] [PubMed] [Google Scholar]
  • Fessel JP, Porter NA, Moore KP, Sheller JR, Roberts LJ. 2002. Discovery of lipid peroxidation products formed in vivo with a substituted tetrahydrofuran ring (isofurans) that are favored by increased oxygen tension. Proc. Natl. Acad. Sci. U.S.A. 99: 16713–16718. [CrossRef] [Google Scholar]
  • Galano J-M, Mas E, Barden A, et al. 2013. Isoprostanes and neuroprostanes: Total synthesis, biological activity and biomarkers of oxidative stress in humans. Prostaglandins Other Lipid Mediat. 107: 95–102. [CrossRef] [PubMed] [Google Scholar]
  • Galano J-M, Lee JC-Y, Gladine C, et al. 2015. Non-enzymatic cyclic oxygenated metabolites of adrenic, docosahexaenoic, eicosapentaenoic and α-linolenic acids; bioactivities and potential use as biomarkers. Biochim. Biophys. Acta 1851: 446–455. [Google Scholar]
  • Gilles S, Mariani V, Bryce M, et al. 2009. Pollen-Derived E1-Phytoprostanes Signal via PPAR-{gamma}and NF-{kappa}B-Dependent Mechanisms. J. Immunol. 182: 6653–6658. [CrossRef] [PubMed] [Google Scholar]
  • GISSI-Prevenzione Investigators. 1999. Lancet 354: 447–455. [Google Scholar]
  • Gladine C, Newman JW, Durand T, et al. 2014. Lipid Profiling following Intake of the Omega 3 Fatty Acid DHA Identifies the Peroxidized Metabolites F4-Neuroprostanes as the Best Predictors of Atherosclerosis Prevention. PLoS One 9: e89393. [CrossRef] [PubMed] [Google Scholar]
  • Gutermuth J, Bewersdorff M, Traidl-Hoffmann C, et al. 2007. Immunomodulatory effects of aqueous birch pollen extracts and phytoprostanes on primary immune responses in vivo. J. Allergy Clin. Immunol. 120: 293–299. [CrossRef] [Google Scholar]
  • Hou X, Roberts LJ, Gobeil F, et al. 2004. Isomer-specific contractile effects of a series of synthetic F2-isoprostanes on retinal and cerebral microvasculature. Free Radic. Biol. Med. 36: 163–172 [CrossRef] [PubMed] [Google Scholar]
  • Hsieh YP, Lin CL, Shiue AL, et al. 2009. Correlation of F4-neuroprostanes levels in cerebrospinal fluid with outcome of aneurysmal subarachnoid hemorrhage in humans. Free Radic. Biol. Med. 47: 814–824. [CrossRef] [PubMed] [Google Scholar]
  • Il’yasova D,Ivanova A, Morrow JD, Cesari M, Pahor M. 2008. Correlation between two markers of inflammation, serum C-reactive protein and interleukin 6, and indices of oxidative stress in patients with high risk of cardiovascular disease. Biomarkers 13: 41–51. [CrossRef] [PubMed] [Google Scholar]
  • Imbusch R, Mueller MJ. 2000. Formation of isoprostane F(2)-like compounds (phytoprostanes F(1)) from alpha-linolenic acid in plants. Free Radic. Biol. Med. 28: 720–726. [CrossRef] [PubMed] [Google Scholar]
  • Jahn U, Galano JM, Durand T. 2008. Beyond prostaglandins–chemistry and biology of cyclic oxygenated metabolites formed by free-radical pathways from polyunsaturated fatty acids. Angew. Chem. Int. Ed. Engl. 47: 5894–5955. [CrossRef] [PubMed] [Google Scholar]
  • Jamil J, Wright A, Harrison N, et al. 2012. Regulation of [(3)H]d-aspartate release by the 5-F(2t)-isoprostane and its 5-epimer in isolated bovine retina. Neurochem. Res. 37: 574–582. [CrossRef] [PubMed] [Google Scholar]
  • Janssen LJ. 2008. Isoprostanes and lung vascular pathology. Am. J. Respir. Cell Mol. Biol. 39: 383–389. [CrossRef] [PubMed] [Google Scholar]
  • Judé S, Bedut S, Roger S, et al. 2003. Peroxidation of docosahexaenoic acid is responsible for its effects on I TO and I SS in rat ventricular myocytes. Br. J. Pharmacol. 139: 816–822 [CrossRef] [PubMed] [Google Scholar]
  • Le Guennec J-Y, Galano JM, Oger C, et al. 5 December 2012. Methods and pharmaceutical composition for the treatment and prevention of cardiac arrhythmias. European patent EP12306519.3. [Google Scholar]
  • Loeffler C, Berger S, Guy A, et al. 2005. B1-phytoprostanes trigger plant defense and detoxification responses. Plant Physiol. 137: 328–340. [CrossRef] [PubMed] [Google Scholar]
  • Magder S. 2006. Reactive oxygen species: toxic molecules or spark of life ? Critical Care 10: 208–215. [CrossRef] [Google Scholar]
  • Mariani V, Gilles S, Jakob T, et al. 2007. Immunomodulatory mediators from pollen enhance the migratory capacity of dendritic cells and license them for Th2 attraction. J. Immunol. 178: 7623–7631. [CrossRef] [PubMed] [Google Scholar]
  • Mas E, Michel F, Guy A, et al. 2008. Quantification of urinary F2-Isoprostane with 4(RS)-F4t-Neuroprostane as an internal standard using gas chromatography-mass spectrometry. J. Chromatrogr. B 10: 5087–5090. [Google Scholar]
  • Michel F, Bonnefont-Rousselot D, Mas E, Drai J, Thérond P. 2008. Biomarkers of lipid peroxidation: analytical aspects. Ann. Biol. Clin. 66: 605–620. [Google Scholar]
  • Milne GL, Yin H, Brooks JD, Sanchez S, Roberts II LJ, Morrow JD. 2007. Quantification of F2-isoprostanes in biological fluids and tissues as a measure of oxidant stress. Methods Enzymol. 433: 113–126. [CrossRef] [PubMed] [Google Scholar]
  • Milne GL, Yin H, Hardy KD, Davies SS, Roberts LJ. 2011. Isoprostane Generation and Function. Chem. Rev. 111: 5973–5996. [CrossRef] [PubMed] [Google Scholar]
  • Minghetti L, Salvi R, Lavinia Salvatori M, Ajmone-Cat MA, et al. 2014. Nonenzymatic oxygenated metabolites of α-linolenic acid B1- and L1-phytoprostanes protect immature neurons from oxidant injury and promote differentiation of oligodendrocyte progenitors through PPAR-Î3 activation. Free Radic. Biol. Med. 73: 41–50. [CrossRef] [PubMed] [Google Scholar]
  • Morrow JD, Roberts II LJ. 1994. Mass spectrometry of prostanoids: F2-isoprostanes produced by non-cyclooxygenase free radical-catalyzed mechanism. Methods Enzymol. 233: 163–174. [CrossRef] [PubMed] [Google Scholar]
  • Morrow JD, Hill KE, Burk RF, Nammour TM, Badr KF, Roberts II LJ. 1990. A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism. Proc. Natl. Acad. Sci. USA 87: 9383–9387. [CrossRef] [Google Scholar]
  • Nourooz-Zadeh J, Liu EH, Anggard E, Halliwell B. 1998. F4-isoprostanes: a novel class of prostanoids formed during peroxidation of docosahexaenoic acid (DHA). Biochem. Biophys. Res. Commun. 242: 338–344 [CrossRef] [PubMed] [Google Scholar]
  • Oger C, Brinkmann Y, Bouazzaoui S, Durand T, Galano J-M. 2008. Stereocontrolled Access to Isoprostanes via a Bicyclo[3.3.0]octene Framework. Org. Lett. 10: 5087–5090. [CrossRef] [PubMed] [Google Scholar]
  • Oger C, Bultel-Poncé V, Guy A, et al. 2010. The Handy Use of Brown’s P2-Ni Catalyst for a Skipped Diyne Deuteration: Application to the Synthesis of a [D(4)]-Labeled F(4t)-Neuroprostane. Chemistry A Eur. J. 16: 13976–13980. [CrossRef] [Google Scholar]
  • Oger C, Bultel-Poncé V, Guy A, Durand T, Galano J-M. 2012. Total Syntheses of Isoprostanes Derived from Adrenic Acid and EPA. Eur. J. Org. Chem. 2012: 2621–2634. [CrossRef] [Google Scholar]
  • Opere CA, Zheng W, Huang J, Adewale A, Kruglet M, Ohia SE. 2005. Dual effects of isoprostanes on the release of [3H]D-aspartate from isolated bovine retinae: Role of arachidonic acid metabolites. Neurochem. Res. 30: 129–137. [CrossRef] [PubMed] [Google Scholar]
  • Roberts II LJ, Montine TJ, Markesbery WR, et al. 1998. Formation of isoprostane-like compounds (neuroprostanes) in vivo from docosahexaenoic acid. J. Biol. Chem. 273: 13605-13612. [CrossRef] [PubMed] [Google Scholar]
  • Roy J, Oger C, Thireau J, et al. 2015. Nonenzymatic lipid mediators, neuroprostanes, exert the antiarrhythmic properties of docosahexaenoic acid. Free Radic. Biol. Med. 86: 269–278. [CrossRef] [PubMed] [Google Scholar]
  • Solberg R, Longini M, Proietti F, Vezzosi P, Saugstad OD, Buonocore G. 2012. Resuscitation with supplementary oxygen induces oxidative injury in the cerebral cortex. Free Radic. Biol. Med. 53: 1061–1067. [CrossRef] [PubMed] [Google Scholar]
  • Song W-L, Lawson JA, Reilly D, et al. 2008. Neurofurans, Novel Indices of Oxidant Stress Derived from Docosahexaenoic Acid. J. Biol. Chem. 283: 6–16. [CrossRef] [PubMed] [Google Scholar]
  • Stafforini DM, Sheller JR, Blackwell TS, et al. 2006. Release of Free F2-isoprostanes from Esterified Phospholipids Is Catalyzed by Intracellular and Plasma Platelet-activating Factor Acetylhydrolases. J. Biol. Chem. 281: 4616–4623. [CrossRef] [PubMed] [Google Scholar]
  • Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Wilztum JL. 1989. Beyond cholesterol: modifications of low-density lipoprotein that increase its atherogenecity. N. Engl. J. Med. 320: 915–924. [CrossRef] [PubMed] [Google Scholar]
  • Thoma I, Loeffler C, Sinha AK, et al. 2003. Cyclopentenone isoprostanes induced by reactive oxygen species trigger defense gene activation and phytoalexin accumulation in plants. Plant J. 34: 363–375. [CrossRef] [PubMed] [Google Scholar]
  • Traidl-Hoffmann C, Mariani V, Hochrein H, et al. 2005. Pollen-associated phytoprostanes inhibit dendritic cell interleukin-12 production and augment T helper type 2 cell polarization. J. Exp. Med. 201: 627–636. [CrossRef] [PubMed] [Google Scholar]
  • VanRollins M, Woltjer RL, Yin H, Morrow JD, Montine TJ. 2008. F2-Dihomo-isoprostanes arise from free radical attack on adrenic acid. J. Lipid Res. 49: 995–1005. [CrossRef] [PubMed] [Google Scholar]
  • Vigor C, Bertrand-Michel J, Pinot E, et al. 2014. Non-enzymatic lipid oxidation products in biological systems: Assessment of the metabolites from polyunsaturated fatty acids. J. Chromatog. B 964: 65–78. [CrossRef] [Google Scholar]
  • Zhao M, Destache C, Ohia S, Opere C. 2009. Role of prostanoid production and receptors in the regulation of retinal endogenous amino acid neurotransmitters by 8-isoprostaglandin ex vivo. Neurochem. Res. 34: 2170–2180. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.