Open Access
Numéro
OCL
Volume 19, Numéro 4, Juillet-Août 2012
Page(s) 238 - 244
Section Fondamental
DOI https://doi.org/10.1051/ocl.2012.0459
Publié en ligne 15 juillet 2012
  • Alessandri JM, Poumès-Ballihaut C, Langelier B, et al. Incorporation of docosahexaenoic acid into nerve membrane phospholipids: bridging the gap between animals and cultured cells. Am J Clin Nutr 2003 ; 78 : 702–710. [CrossRef] [PubMed] [Google Scholar]
  • Alessandri JM, Guesnet P, Vancassel S, et al. Polyunsaturated fatty acids in the central nervous system: evolution of concepts and nutritional implications throughout life. Reprod Nutr Dev 2004 ; 44 : 509–538. [CrossRef] [PubMed] [Google Scholar]
  • Alessandri JM, Astorg P, Chardigny JM, et al. Acides gras polyinsaturés (AGPI) - Structure, métabolisme, fonctions biologiques, apports nutritionnels recommandés et principales sources alimentaires. In: Robertfroid M, Coxam V, Delzenne N (eds.), Aliments Fonctionnels. 2e ed. Ed Tec & Doc-Lavoisier Paris, pp. 161–196, 2007. [Google Scholar]
  • Attwell D, Iadecola C. The neural basis of functional brain imaging signals. Trends Neurosci 2002 ; 25 : 621–625. [CrossRef] [PubMed] [Google Scholar]
  • Bazan NG, Molina MF, Gordon WC. Docosahexaenoic acid signalolipidomics in nutrition: significance in aging, neuroinflammation, macular degeneration, Alzheimer’s, and other neurodegenerative diseases. Annu Rev Nutr 2011 ; 21 : 321–351. [CrossRef] [PubMed] [Google Scholar]
  • Bourre JM, Francois M, Youyou A, Dumont O, Piciotti M, Pascal G, Durand G. The effects of dietary alpha-linolenic acid on the composition of nerve membranes, enzymatic activity, amplitude of electrophysiological parameters, resistance to poisons and performance of learning tasks in rats. J Nutr 1989 ; 119 : 1880–1892. [CrossRef] [PubMed] [Google Scholar]
  • Brenna JT, Diau GY. The influence of dietary docosahexaenoic acid and arachidonic acid on central nervous system polyunsaturated fatty acid composition. Prostaglandins Leukot Essent Fatty Acids 2007 ; 77 : 247–250. [CrossRef] [PubMed] [Google Scholar]
  • Chalon S. Omega-3 fatty acids and monoamine neurotransmission. Prostaglandins Leukot Essent Fatty Acids 2006 ; 7 : 259–269. [CrossRef] [PubMed] [Google Scholar]
  • Choeiri C, Staines W, Miki T, Seino S, Messier C. Glucose transporter plasticity during memory processing. Neuroscience 2005 ; 130 : 591–600. [CrossRef] [PubMed] [Google Scholar]
  • Cunnane SC, Nugent S, Roy M, et al. Brain fuel metabolism, aging, and Alzheimer’s disease. Nutrition 2011 ; 27 : 3–20. [CrossRef] [PubMed] [Google Scholar]
  • Duelli R, Kuschinsky W. Brain glucose transporters: relationship o local energy demand. News Physiol Sci 2001 ; 16 : 71–76. [PubMed] [Google Scholar]
  • Duelli R, Maurer MH, Staudt R, Sokoloff L, Kuschinsky W. Correlation between local glucose transporter densities and local 3-O-methylglucose transport in rat brain. Neurosci Lett 2001 ; 310 : 101–104. [CrossRef] [PubMed] [Google Scholar]
  • Guesnet P, Pascal G, Durand G. Dietary alpha-linolenic acid deficiency in the rat. I. Effects on reproduction and postnatal growth. Reprod Nutr Dev 1986 ; 26 : 969–985. [CrossRef] [PubMed] [Google Scholar]
  • Guesnet P, Alessandri JM, Astorg P, Pifferi F, Lavialle M. Les rôles physiologiques majeurs exercés par les acides gras polyinsaturés (AGPI). OCL 2005 ; 12 : 333–343. [Google Scholar]
  • Guesnet P, Alessandri JM. Docosahexaenoic acid (DHA) and the developing central nervous system (CNS) - Implications for dietary recommendations. Biochimie 2011 ; 93 : 7–12. [CrossRef] [PubMed] [Google Scholar]
  • Harbeby E, Tremblay S, Mercier-Tremblay J, et al. Omega-3 fatty acids and brain glucose utilization: an 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) study in the rat. Poster. ISSFAL 2010, Maastricht, Netherlands. P 161. [Google Scholar]
  • Harbeby E, Jouin M, Alessandri JM, et al. N-3 PUFA status affects expression of genes involved in neuroenergetics differently in the fronto-parietal cortex compared to the CA1 area of the hippocampus: Effect of rest and neuronal activation in the rat. Prostaglandins Leukot Essent Fatty Acids 2012 (in Press). [Google Scholar]
  • Hichami A, Datiche F, Ullah S, Liénard F, Chardigny JM, Cattarelli M, Khan NA. Olfactory discrimination ability and brain expression of c-fos, Gir and Glut1 mRNA are altered in n-3 fatty acid-depleted rats. Behav Brain Res 2007 ; 184 : 1–10. [CrossRef] [PubMed] [Google Scholar]
  • Kitajka K, Sinclair AJ, Weisinger RS, Weisinger HS, Mathai M, Halver JE, Puskás LG. Effects of dietary omega-3 polyunsaturated fatty gene expression. Proc Natl Acad Sci USA 2004 ; 101 : 10931–10936. [CrossRef] [Google Scholar]
  • Niemoller TD, Bazan NG. Docosahexaenoic acid neurolipidomics. Prostaglandins Other Lipid Mediat 2010 ; 91 : 85–89. [CrossRef] [PubMed] [Google Scholar]
  • Pifferi F, Roux F, Langelier B, Vancassel S, Jouin M, Lavialle M, Guesnet P. (n-3) polyunsaturated fatty acid deficiency reduces the expression of both isoforms of the brain glucose transporter GLUT1 in rats. J Nutr 2005 ; 135 : 2241–2246. [PubMed] [Google Scholar]
  • Pifferi F, Jouin M, Alessandri JM, et al. n-3 Fatty acids modulate brain glucose transport in endothelial cells of the blood-brain barrier. Prostaglandins Leukot Essent Fatty Acids 2007 ; 77 : 279–286. [CrossRef] [PubMed] [Google Scholar]
  • Pifferi F, Jouin M, Alessandri JM, et al. n-3 long-chain fatty acids and regulation of glucose transport in two models of rat brain endothelial cells. Neurochem Int 2010 ; 56 : 703–710. [CrossRef] [PubMed] [Google Scholar]
  • Plourde M, Cunnane SC. Extremely limited synthesis of long chain polyunsaturates in adults: implications for their dietary essentiality and use as supplements. Appl Physiol Nutr Metab 2007 ; 32 : 619–634. [CrossRef] [PubMed] [Google Scholar]
  • Poumès-Ballihaut C. Effets d’un apport alimentaire en acide docosahexaénoïque (DHA, 22: 6n–3) sur la composition lipidique membranaire du cerveau et de la rétine, et sur 2 fonctions neurophysiologiques chez le rat: la neurotransmission dopaminergique corticale et la réponse électrique de la rétine. Doctorat de l’Ecole Nationale Supérieure Agronomique de Rennes 2002, PP 263. [Google Scholar]
  • Sublette ME, Milak MS, Hibbeln JR, et al. Plasma polyunsaturated fatty acids and regional cerebral glucose metabolism in major depression. Prostaglandins Leukot Essent Fatty Acids 2009 ; 80 : 57–64. [CrossRef] [PubMed] [Google Scholar]
  • Ximenes da Silva A, Lavialle F, Gendrot G, Guesnet P, Alessandri JM, Lavialle M. Glucose transport and utilization are altered in the brain of rats deficient in n-3 polyunsaturated fatty acids. J Neurochem 2002 ; 81 : 1328–1337. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.