Open Access
Volume 19, Number 4, Juillet-Août 2012
Page(s) 238 - 244
Section Fondamental
Published online 15 July 2012
  • Alessandri JM, Poumès-Ballihaut C, Langelier B, et al. Incorporation of docosahexaenoic acid into nerve membrane phospholipids: bridging the gap between animals and cultured cells. Am J Clin Nutr 2003 ; 78 : 702–710. [CrossRef] [PubMed] [Google Scholar]
  • Alessandri JM, Guesnet P, Vancassel S, et al. Polyunsaturated fatty acids in the central nervous system: evolution of concepts and nutritional implications throughout life. Reprod Nutr Dev 2004 ; 44 : 509–538. [CrossRef] [PubMed] [Google Scholar]
  • Alessandri JM, Astorg P, Chardigny JM, et al. Acides gras polyinsaturés (AGPI) - Structure, métabolisme, fonctions biologiques, apports nutritionnels recommandés et principales sources alimentaires. In: Robertfroid M, Coxam V, Delzenne N (eds.), Aliments Fonctionnels. 2e ed. Ed Tec & Doc-Lavoisier Paris, pp. 161–196, 2007. [Google Scholar]
  • Attwell D, Iadecola C. The neural basis of functional brain imaging signals. Trends Neurosci 2002 ; 25 : 621–625. [CrossRef] [PubMed] [Google Scholar]
  • Bazan NG, Molina MF, Gordon WC. Docosahexaenoic acid signalolipidomics in nutrition: significance in aging, neuroinflammation, macular degeneration, Alzheimer’s, and other neurodegenerative diseases. Annu Rev Nutr 2011 ; 21 : 321–351. [CrossRef] [PubMed] [Google Scholar]
  • Bourre JM, Francois M, Youyou A, Dumont O, Piciotti M, Pascal G, Durand G. The effects of dietary alpha-linolenic acid on the composition of nerve membranes, enzymatic activity, amplitude of electrophysiological parameters, resistance to poisons and performance of learning tasks in rats. J Nutr 1989 ; 119 : 1880–1892. [CrossRef] [PubMed] [Google Scholar]
  • Brenna JT, Diau GY. The influence of dietary docosahexaenoic acid and arachidonic acid on central nervous system polyunsaturated fatty acid composition. Prostaglandins Leukot Essent Fatty Acids 2007 ; 77 : 247–250. [CrossRef] [PubMed] [Google Scholar]
  • Chalon S. Omega-3 fatty acids and monoamine neurotransmission. Prostaglandins Leukot Essent Fatty Acids 2006 ; 7 : 259–269. [CrossRef] [PubMed] [Google Scholar]
  • Choeiri C, Staines W, Miki T, Seino S, Messier C. Glucose transporter plasticity during memory processing. Neuroscience 2005 ; 130 : 591–600. [CrossRef] [PubMed] [Google Scholar]
  • Cunnane SC, Nugent S, Roy M, et al. Brain fuel metabolism, aging, and Alzheimer’s disease. Nutrition 2011 ; 27 : 3–20. [CrossRef] [PubMed] [Google Scholar]
  • Duelli R, Kuschinsky W. Brain glucose transporters: relationship o local energy demand. News Physiol Sci 2001 ; 16 : 71–76. [PubMed] [Google Scholar]
  • Duelli R, Maurer MH, Staudt R, Sokoloff L, Kuschinsky W. Correlation between local glucose transporter densities and local 3-O-methylglucose transport in rat brain. Neurosci Lett 2001 ; 310 : 101–104. [CrossRef] [PubMed] [Google Scholar]
  • Guesnet P, Pascal G, Durand G. Dietary alpha-linolenic acid deficiency in the rat. I. Effects on reproduction and postnatal growth. Reprod Nutr Dev 1986 ; 26 : 969–985. [CrossRef] [PubMed] [Google Scholar]
  • Guesnet P, Alessandri JM, Astorg P, Pifferi F, Lavialle M. Les rôles physiologiques majeurs exercés par les acides gras polyinsaturés (AGPI). OCL 2005 ; 12 : 333–343. [Google Scholar]
  • Guesnet P, Alessandri JM. Docosahexaenoic acid (DHA) and the developing central nervous system (CNS) - Implications for dietary recommendations. Biochimie 2011 ; 93 : 7–12. [CrossRef] [PubMed] [Google Scholar]
  • Harbeby E, Tremblay S, Mercier-Tremblay J, et al. Omega-3 fatty acids and brain glucose utilization: an 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) study in the rat. Poster. ISSFAL 2010, Maastricht, Netherlands. P 161. [Google Scholar]
  • Harbeby E, Jouin M, Alessandri JM, et al. N-3 PUFA status affects expression of genes involved in neuroenergetics differently in the fronto-parietal cortex compared to the CA1 area of the hippocampus: Effect of rest and neuronal activation in the rat. Prostaglandins Leukot Essent Fatty Acids 2012 (in Press). [Google Scholar]
  • Hichami A, Datiche F, Ullah S, Liénard F, Chardigny JM, Cattarelli M, Khan NA. Olfactory discrimination ability and brain expression of c-fos, Gir and Glut1 mRNA are altered in n-3 fatty acid-depleted rats. Behav Brain Res 2007 ; 184 : 1–10. [CrossRef] [PubMed] [Google Scholar]
  • Kitajka K, Sinclair AJ, Weisinger RS, Weisinger HS, Mathai M, Halver JE, Puskás LG. Effects of dietary omega-3 polyunsaturated fatty gene expression. Proc Natl Acad Sci USA 2004 ; 101 : 10931–10936. [CrossRef] [Google Scholar]
  • Niemoller TD, Bazan NG. Docosahexaenoic acid neurolipidomics. Prostaglandins Other Lipid Mediat 2010 ; 91 : 85–89. [CrossRef] [PubMed] [Google Scholar]
  • Pifferi F, Roux F, Langelier B, Vancassel S, Jouin M, Lavialle M, Guesnet P. (n-3) polyunsaturated fatty acid deficiency reduces the expression of both isoforms of the brain glucose transporter GLUT1 in rats. J Nutr 2005 ; 135 : 2241–2246. [PubMed] [Google Scholar]
  • Pifferi F, Jouin M, Alessandri JM, et al. n-3 Fatty acids modulate brain glucose transport in endothelial cells of the blood-brain barrier. Prostaglandins Leukot Essent Fatty Acids 2007 ; 77 : 279–286. [CrossRef] [PubMed] [Google Scholar]
  • Pifferi F, Jouin M, Alessandri JM, et al. n-3 long-chain fatty acids and regulation of glucose transport in two models of rat brain endothelial cells. Neurochem Int 2010 ; 56 : 703–710. [CrossRef] [PubMed] [Google Scholar]
  • Plourde M, Cunnane SC. Extremely limited synthesis of long chain polyunsaturates in adults: implications for their dietary essentiality and use as supplements. Appl Physiol Nutr Metab 2007 ; 32 : 619–634. [CrossRef] [PubMed] [Google Scholar]
  • Poumès-Ballihaut C. Effets d’un apport alimentaire en acide docosahexaénoïque (DHA, 22: 6n–3) sur la composition lipidique membranaire du cerveau et de la rétine, et sur 2 fonctions neurophysiologiques chez le rat: la neurotransmission dopaminergique corticale et la réponse électrique de la rétine. Doctorat de l’Ecole Nationale Supérieure Agronomique de Rennes 2002, PP 263. [Google Scholar]
  • Sublette ME, Milak MS, Hibbeln JR, et al. Plasma polyunsaturated fatty acids and regional cerebral glucose metabolism in major depression. Prostaglandins Leukot Essent Fatty Acids 2009 ; 80 : 57–64. [CrossRef] [PubMed] [Google Scholar]
  • Ximenes da Silva A, Lavialle F, Gendrot G, Guesnet P, Alessandri JM, Lavialle M. Glucose transport and utilization are altered in the brain of rats deficient in n-3 polyunsaturated fatty acids. J Neurochem 2002 ; 81 : 1328–1337. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.