Open Access
Numéro
OCL
Volume 18, Numéro 4, Juillet-Août 2011
Lipids and Brain II. Actes des Journées Chevreul 2011 (Première partie)
Page(s) 208 - 213
Section Chevreul Award Lecture
DOI https://doi.org/10.1051/ocl.2011.0403
Publié en ligne 15 juillet 2011
  • Akbar M, Calderon F, Wen Z, Kim H. Docosahexaenoic acid: a positive modulator of Akt signaling in neuronal survival. Proc Natl Acad Sci USA 2005; 102: 10858–10863. [CrossRef] [Google Scholar]
  • Amor S, Puentes F, Baker D, van der Valk P. Inflammation in neurodegenerative diseases. Immunology 2010; 129: 154–169. [CrossRef] [PubMed] [Google Scholar]
  • Antony R, Lukiw WJ, Bazan NG. Neuroprotectin D1 induces dephosphorylation of Bcl-xL in a PP2A-dependent manner during oxidative stress and promotes retinal pigment epithelial cell survival. J Biol Chem 2010; 285: 18301–18308. [CrossRef] [PubMed] [Google Scholar]
  • Avramovich Y, Amit T, Youdim MB. Non-steroidal anti-inflammatory drugs stimulate secretion of non-amyloidogenic precursor protein. J Biol Chem 2002; 277: 31466–31473. [CrossRef] [PubMed] [Google Scholar]
  • Bazan NG. Synaptic lipid signaling: significance of polyunsaturated fatty acids and platelet-activating factor. J Lipid Res 2003; 44: 2221–2233. [CrossRef] [PubMed] [Google Scholar]
  • Bazan NG. Cell survival matters: docosahexaenoic acid signaling, neuroprotection and photoreceptors. Trends Neurosci 2006; 29: 241–294. [CrossRef] [PubMed] [Google Scholar]
  • Bazan NG. Homeostatic regulation of photoreceptor cell integrity: Significance of the potent mediator neuroprotectin D1 biosynthesized from docosahexaenoic acid. The Proctor Lecture. Invest Ophthal Vis Sci 2007; 48: 4866–4881. [CrossRef] [Google Scholar]
  • Bazan NG. Neuroprotectin D1-mediated anti-inflammatory and survival signaling in stroke, retinal degenerations, and Alzheimer’s disease. J Lipid Res 2009; 50: S400–S405. [CrossRef] [PubMed] [Google Scholar]
  • Bazan NG, Calandria JM, Serhan CN. Rescue and repair during photoreceptor cell renewal mediated by docosahexaenoic acid-derived neuroprotectin D1. J Lipid Res 2010; 51: 2018–2031. [CrossRef] [PubMed] [Google Scholar]
  • Bazan NG, Molina MF, Gordon WC. Docosahexaenoic Acid signalolipidomics in nutrition: significance in aging, neuroinflammation, macular degeneration, Alzheimer’s, and other neurodegenerative diseases. Annu Rev Nutr 2011; 31: 321–351. [Google Scholar]
  • Belayev L, Khoutorova L, Atkins KD, Bazan NG. Robust docosahexaenoic acid-mediated neuroprotection in a rat model of transient focal cerebral ischemia. Stroke 2009; 40: 3121–3126. [CrossRef] [PubMed] [Google Scholar]
  • Belayev L, Khoutorova L, Atkins KD, et al. Docosahexaenoic acid therapy of experimental ischemic stroke. Transl Stroke Res 2011; 2: 33–41. [CrossRef] [PubMed] [Google Scholar]
  • Bertram L, Lill CM, Tanzi RE. The genetics of Alzheimer disease: back to the future. Neuron 2010; 68: 270–281. [CrossRef] [PubMed] [Google Scholar]
  • Calandria JM, Marcheselli VL, Mukherjee PK, et al. Selective survival rescue in 15-lipoxygenase-1 deficient retinal pigment epithelial cells by the novel docosahexaenoic acid-derived mediator, neuroprotectin D1. J Biol Chem 2009; 284: 17877–17882. [CrossRef] [PubMed] [Google Scholar]
  • Camacho IE, Serneels L, Spittaels K, Merchiers P, Dominguez D, De Strooper B. Peroxisome-proliferator-activated receptor gamma induces a clearance mechanism for the amyloid-beta peptide. J Neurosci 2004; 24: 10908–10917. [CrossRef] [PubMed] [Google Scholar]
  • d’Abramo C, Massone S, Zingg JM, et al. Role of peroxisome proliferator-activated receptor gamma in amyloid precursor protein processing and amyloid beta-mediated cell death. Biochem J 2005; 391: 693–698. [CrossRef] [PubMed] [Google Scholar]
  • DeMar JC Jr., Ma K, Bell JM, Igarashi M, Greenstein D, Rapoport SI. One generation of n-3 polyunsaturated fatty acid deprivation increases depression and aggression test scores in rats. J Lipid Res 2006; 47: 172–180. [CrossRef] [PubMed] [Google Scholar]
  • Fisher M. The ischemic penumbra. Cerebrovasc Dis 2006; 21: 64–70. [CrossRef] [PubMed] [Google Scholar]
  • Fotuhi M, Mohassel P, Yaffe K. Fish consumption, long-chain omega-3 fatty acids and risk of cognitive decline or Alzheimer disease: a complex association. Nat Clin Pract Neurol 2009; 5: 140–152. [CrossRef] [PubMed] [Google Scholar]
  • Goedert M, Clavaguera F, Tolnay M. The propagation of prion-like protein inclusions in neurodegenerative diseases. Trends Neurosci 2010; 33: 317–325. [CrossRef] [PubMed] [Google Scholar]
  • Golde TE, Dickson D, Hutton M. Filling the gaps in the abeta cascade hypothesis of Alzheimer’s disease. Curr Alzheimer Res 2006; 3: 421–430. [CrossRef] [PubMed] [Google Scholar]
  • Green KN, Martinez-Coria H, Khashwji H, et al. Dietary docosahexaenoic acid and docosapentaenoic acid ameliorate amyloid-beta and tau pathology via a mechanism involving presenilin 1 levels. J Neurosci 2007; 27: 4385–4395. [CrossRef] [PubMed] [Google Scholar]
  • Haass C. Initiation and propagation of neurodegeneration. Nat Med 2010; 2010 (16): 1201–1204. [CrossRef] [Google Scholar]
  • Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol 2007; 8: 101–112. [CrossRef] [PubMed] [Google Scholar]
  • Haass C, Mandelkow E. Fyn-tau-amyloid: a toxic triad. Cell 2010; 142: 356–358. [CrossRef] [PubMed] [Google Scholar]
  • Henke BR. Peroxisome proliferator-activated receptor gamma (PPARgamma) ligands and their therapeutic utility. Prog Med Chem 2004; 42: 1–53. [CrossRef] [PubMed] [Google Scholar]
  • Li F, Cao W, Anderson RE. Protection of photoreceptor cells in adult rats from light-induced degeneration by adaptation to bright cyclic light. Exp Eye Res 2001; 73: 569–577. [CrossRef] [PubMed] [Google Scholar]
  • Lim SY, Hoshiba J, Moriguchi T, Salem N Jr.. N-3 fatty acid deficiency induced by a modified artificial rearing method leads to poorer performance in spatial learning tasks. Pediatr Res 2005a; 58: 741–748. [CrossRef] [Google Scholar]
  • Lim SY, Hoshiba J, Salem N Jr.. An extraordinary degree of structural specificity is required in neural phospholipids for optimal brain function: n-6 docosapentaenoic acid substitution for docosahexaenoic acid leads to a loss in spatial task performance. J Neurochem 2005b; 95: 848–857. [CrossRef] [PubMed] [Google Scholar]
  • Lo EH. A new penumbra: transitioning from injury into repair after stroke. Nat Med 2008; 14: 497–500. [CrossRef] [PubMed] [Google Scholar]
  • Lukiw WJ, Cui JG, Marcheselli VL, et al. A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. J Clin Invest 2005; 115: 2774–2783. [CrossRef] [PubMed] [Google Scholar]
  • Marcheselli VL, Hong S, Lukiw WJ, et al. Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J Biol Chem 2003; 278: 43807–43817. [CrossRef] [PubMed] [Google Scholar]
  • Moore SA. Polyunsaturated fatty acid synthesis and release by brain-derived cells in vitro. J Mol Neurosci 2001; 16: 195–200. [CrossRef] [PubMed] [Google Scholar]
  • Mukherjee PK, Marcheselli VL, Serhan CN, Bazan NG. Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc Natl Acad Sci USA 2004; 101: 8491–8496. [CrossRef] [Google Scholar]
  • Mukherjee PK, Marcheselli VL, Barreiro S, Hu J, Bok D, Bazan NG. Neurotrophins enhance retinal pigment epithelial cell survival through neuroprotectin D1 signaling. Proc Natl Acad Sci USA 2007a; 104: 13152–13157. [CrossRef] [Google Scholar]
  • Mukherjee PK, Marcheselli VL, de Rivero Vaccari JC, Gordon WC, Jackson FE, Bazan NG. Photoreceptor outer segment phagocytosis attenuates oxidative stress-induced apoptosis with concomitant neuroprotectin D1 synthesis. Proc Natl Acad Sci USA 2007b; 104: 13158–13163. [CrossRef] [Google Scholar]
  • Salem N, Litman B, Kim HY, Gawrisch K. Mechanisms of action of docosahexaenoic acid in the nervous system. Lipids 2001; 36: 945–959. [CrossRef] [PubMed] [Google Scholar]
  • Sastre M, Dewachter I, Rossner S, et al. Nonsteroidal anti-inflammatory drugs repress beta-secretase gene promoter activity by the activation of PPARgamma. Proc Natl Acad Sci USA 2006; 103: 443–448. [CrossRef] [Google Scholar]
  • Serhan CN. Novel lipid mediators and resolution mechanisms in acute inflammation: to resolve or not? Am J Pathol. 2010; 177: 1576–1591. [CrossRef] [PubMed] [Google Scholar]
  • Walsh DM, Selkoe DJ. A beta oligomers—a decade of discovery. J Neurochem 2007; 101: 1172–1184. [CrossRef] [PubMed] [Google Scholar]
  • Yamamoto K, Itoh T, Abe D, et al. Identification of putative metabolites of docosahexaenoic acid as potent PPARgamma agonists and antidiabetic agents. Bioorg Med Chem Lett 2005; 15: 517–522. [CrossRef] [PubMed] [Google Scholar]
  • Zhao Y, Calon F, Julien C, et al. Docosahexaenoic acid-derived neuroprotectin D1 induces neuronal survival via secretase- and PPARγ-mediated mechanisms in Alzheimer’s disease models. PLoS One 2011; 6: e15816. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.