Open Access
Volume 18, Number 4, Juillet-Août 2011
Lipids and Brain II. Actes des Journées Chevreul 2011 (Première partie)
Page(s) 208 - 213
Section Chevreul Award Lecture
Published online 15 July 2011
  • Akbar M, Calderon F, Wen Z, Kim H. Docosahexaenoic acid: a positive modulator of Akt signaling in neuronal survival. Proc Natl Acad Sci USA 2005; 102: 10858–10863. [CrossRef] [Google Scholar]
  • Amor S, Puentes F, Baker D, van der Valk P. Inflammation in neurodegenerative diseases. Immunology 2010; 129: 154–169. [CrossRef] [PubMed] [Google Scholar]
  • Antony R, Lukiw WJ, Bazan NG. Neuroprotectin D1 induces dephosphorylation of Bcl-xL in a PP2A-dependent manner during oxidative stress and promotes retinal pigment epithelial cell survival. J Biol Chem 2010; 285: 18301–18308. [CrossRef] [PubMed] [Google Scholar]
  • Avramovich Y, Amit T, Youdim MB. Non-steroidal anti-inflammatory drugs stimulate secretion of non-amyloidogenic precursor protein. J Biol Chem 2002; 277: 31466–31473. [CrossRef] [PubMed] [Google Scholar]
  • Bazan NG. Synaptic lipid signaling: significance of polyunsaturated fatty acids and platelet-activating factor. J Lipid Res 2003; 44: 2221–2233. [CrossRef] [PubMed] [Google Scholar]
  • Bazan NG. Cell survival matters: docosahexaenoic acid signaling, neuroprotection and photoreceptors. Trends Neurosci 2006; 29: 241–294. [CrossRef] [PubMed] [Google Scholar]
  • Bazan NG. Homeostatic regulation of photoreceptor cell integrity: Significance of the potent mediator neuroprotectin D1 biosynthesized from docosahexaenoic acid. The Proctor Lecture. Invest Ophthal Vis Sci 2007; 48: 4866–4881. [CrossRef] [Google Scholar]
  • Bazan NG. Neuroprotectin D1-mediated anti-inflammatory and survival signaling in stroke, retinal degenerations, and Alzheimer’s disease. J Lipid Res 2009; 50: S400–S405. [CrossRef] [PubMed] [Google Scholar]
  • Bazan NG, Calandria JM, Serhan CN. Rescue and repair during photoreceptor cell renewal mediated by docosahexaenoic acid-derived neuroprotectin D1. J Lipid Res 2010; 51: 2018–2031. [CrossRef] [PubMed] [Google Scholar]
  • Bazan NG, Molina MF, Gordon WC. Docosahexaenoic Acid signalolipidomics in nutrition: significance in aging, neuroinflammation, macular degeneration, Alzheimer’s, and other neurodegenerative diseases. Annu Rev Nutr 2011; 31: 321–351. [CrossRef] [PubMed] [Google Scholar]
  • Belayev L, Khoutorova L, Atkins KD, Bazan NG. Robust docosahexaenoic acid-mediated neuroprotection in a rat model of transient focal cerebral ischemia. Stroke 2009; 40: 3121–3126. [CrossRef] [PubMed] [Google Scholar]
  • Belayev L, Khoutorova L, Atkins KD, et al. Docosahexaenoic acid therapy of experimental ischemic stroke. Transl Stroke Res 2011; 2: 33–41. [CrossRef] [PubMed] [Google Scholar]
  • Bertram L, Lill CM, Tanzi RE. The genetics of Alzheimer disease: back to the future. Neuron 2010; 68: 270–281. [CrossRef] [PubMed] [Google Scholar]
  • Calandria JM, Marcheselli VL, Mukherjee PK, et al. Selective survival rescue in 15-lipoxygenase-1 deficient retinal pigment epithelial cells by the novel docosahexaenoic acid-derived mediator, neuroprotectin D1. J Biol Chem 2009; 284: 17877–17882. [CrossRef] [PubMed] [Google Scholar]
  • Camacho IE, Serneels L, Spittaels K, Merchiers P, Dominguez D, De Strooper B. Peroxisome-proliferator-activated receptor gamma induces a clearance mechanism for the amyloid-beta peptide. J Neurosci 2004; 24: 10908–10917. [CrossRef] [PubMed] [Google Scholar]
  • d’Abramo C, Massone S, Zingg JM, et al. Role of peroxisome proliferator-activated receptor gamma in amyloid precursor protein processing and amyloid beta-mediated cell death. Biochem J 2005; 391: 693–698. [CrossRef] [PubMed] [Google Scholar]
  • DeMar JC Jr., Ma K, Bell JM, Igarashi M, Greenstein D, Rapoport SI. One generation of n-3 polyunsaturated fatty acid deprivation increases depression and aggression test scores in rats. J Lipid Res 2006; 47: 172–180. [CrossRef] [PubMed] [Google Scholar]
  • Fisher M. The ischemic penumbra. Cerebrovasc Dis 2006; 21: 64–70. [CrossRef] [PubMed] [Google Scholar]
  • Fotuhi M, Mohassel P, Yaffe K. Fish consumption, long-chain omega-3 fatty acids and risk of cognitive decline or Alzheimer disease: a complex association. Nat Clin Pract Neurol 2009; 5: 140–152. [CrossRef] [PubMed] [Google Scholar]
  • Goedert M, Clavaguera F, Tolnay M. The propagation of prion-like protein inclusions in neurodegenerative diseases. Trends Neurosci 2010; 33: 317–325. [CrossRef] [PubMed] [Google Scholar]
  • Golde TE, Dickson D, Hutton M. Filling the gaps in the abeta cascade hypothesis of Alzheimer’s disease. Curr Alzheimer Res 2006; 3: 421–430. [CrossRef] [PubMed] [Google Scholar]
  • Green KN, Martinez-Coria H, Khashwji H, et al. Dietary docosahexaenoic acid and docosapentaenoic acid ameliorate amyloid-beta and tau pathology via a mechanism involving presenilin 1 levels. J Neurosci 2007; 27: 4385–4395. [CrossRef] [PubMed] [Google Scholar]
  • Haass C. Initiation and propagation of neurodegeneration. Nat Med 2010; 2010 (16): 1201–1204. [CrossRef] [Google Scholar]
  • Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol 2007; 8: 101–112. [CrossRef] [PubMed] [Google Scholar]
  • Haass C, Mandelkow E. Fyn-tau-amyloid: a toxic triad. Cell 2010; 142: 356–358. [CrossRef] [PubMed] [Google Scholar]
  • Henke BR. Peroxisome proliferator-activated receptor gamma (PPARgamma) ligands and their therapeutic utility. Prog Med Chem 2004; 42: 1–53. [CrossRef] [PubMed] [Google Scholar]
  • Li F, Cao W, Anderson RE. Protection of photoreceptor cells in adult rats from light-induced degeneration by adaptation to bright cyclic light. Exp Eye Res 2001; 73: 569–577. [CrossRef] [PubMed] [Google Scholar]
  • Lim SY, Hoshiba J, Moriguchi T, Salem N Jr.. N-3 fatty acid deficiency induced by a modified artificial rearing method leads to poorer performance in spatial learning tasks. Pediatr Res 2005a; 58: 741–748. [CrossRef] [Google Scholar]
  • Lim SY, Hoshiba J, Salem N Jr.. An extraordinary degree of structural specificity is required in neural phospholipids for optimal brain function: n-6 docosapentaenoic acid substitution for docosahexaenoic acid leads to a loss in spatial task performance. J Neurochem 2005b; 95: 848–857. [CrossRef] [PubMed] [Google Scholar]
  • Lo EH. A new penumbra: transitioning from injury into repair after stroke. Nat Med 2008; 14: 497–500. [CrossRef] [PubMed] [Google Scholar]
  • Lukiw WJ, Cui JG, Marcheselli VL, et al. A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. J Clin Invest 2005; 115: 2774–2783. [CrossRef] [PubMed] [Google Scholar]
  • Marcheselli VL, Hong S, Lukiw WJ, et al. Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J Biol Chem 2003; 278: 43807–43817. [CrossRef] [PubMed] [Google Scholar]
  • Moore SA. Polyunsaturated fatty acid synthesis and release by brain-derived cells in vitro. J Mol Neurosci 2001; 16: 195–200. [CrossRef] [PubMed] [Google Scholar]
  • Mukherjee PK, Marcheselli VL, Serhan CN, Bazan NG. Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc Natl Acad Sci USA 2004; 101: 8491–8496. [CrossRef] [Google Scholar]
  • Mukherjee PK, Marcheselli VL, Barreiro S, Hu J, Bok D, Bazan NG. Neurotrophins enhance retinal pigment epithelial cell survival through neuroprotectin D1 signaling. Proc Natl Acad Sci USA 2007a; 104: 13152–13157. [CrossRef] [Google Scholar]
  • Mukherjee PK, Marcheselli VL, de Rivero Vaccari JC, Gordon WC, Jackson FE, Bazan NG. Photoreceptor outer segment phagocytosis attenuates oxidative stress-induced apoptosis with concomitant neuroprotectin D1 synthesis. Proc Natl Acad Sci USA 2007b; 104: 13158–13163. [CrossRef] [Google Scholar]
  • Salem N, Litman B, Kim HY, Gawrisch K. Mechanisms of action of docosahexaenoic acid in the nervous system. Lipids 2001; 36: 945–959. [CrossRef] [PubMed] [Google Scholar]
  • Sastre M, Dewachter I, Rossner S, et al. Nonsteroidal anti-inflammatory drugs repress beta-secretase gene promoter activity by the activation of PPARgamma. Proc Natl Acad Sci USA 2006; 103: 443–448. [CrossRef] [Google Scholar]
  • Serhan CN. Novel lipid mediators and resolution mechanisms in acute inflammation: to resolve or not? Am J Pathol. 2010; 177: 1576–1591. [CrossRef] [PubMed] [Google Scholar]
  • Walsh DM, Selkoe DJ. A beta oligomers—a decade of discovery. J Neurochem 2007; 101: 1172–1184. [CrossRef] [PubMed] [Google Scholar]
  • Yamamoto K, Itoh T, Abe D, et al. Identification of putative metabolites of docosahexaenoic acid as potent PPARgamma agonists and antidiabetic agents. Bioorg Med Chem Lett 2005; 15: 517–522. [CrossRef] [PubMed] [Google Scholar]
  • Zhao Y, Calon F, Julien C, et al. Docosahexaenoic acid-derived neuroprotectin D1 induces neuronal survival via secretase- and PPARγ-mediated mechanisms in Alzheimer’s disease models. PLoS One 2011; 6: e15816. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.