Open Access
Numéro |
OCL
Volume 18, Numéro 4, Juillet-Août 2011
Lipids and Brain II. Actes des Journées Chevreul 2011 (Première partie)
|
|
---|---|---|
Page(s) | 214 - 217 | |
Section | PUFA, Cholesterol and Alzheimer Diseases | |
DOI | https://doi.org/10.1051/ocl.2011.0398 | |
Publié en ligne | 15 juillet 2011 |
- Abildayeva K, et al. 24(S)-hydroxycholesterol participates in a liver X receptor-controlled pathway in astrocytes that regulates apolipoprotein E-mediated cholesterol efflux. J Biol Chem 2006; 281: 12799–12808. [CrossRef] [PubMed] [Google Scholar]
- Babiker A, et al. Elimination of cholesterol in macrophages and endothelial cells by the sterol 27-hydroxylase mechanism. Comparison with high density lipoprotein-mediated reverse cholesterol transport. J Biol Chem 1997; 272: 26253–26261. [CrossRef] [PubMed] [Google Scholar]
- Bell RD, et al. Transport pathways for clearance of human Alzheimer’s amyloid beta-peptide and apolipoproteins E and J in the mouse central nervous system. J Cereb Blood Flow Metab 2007; 27: 909–918. [PubMed] [Google Scholar]
- Bjorkhem I, et al. Importance of a novel oxidative mechanism for elimination of brain cholesterol. Turnover of cholesterol and 24(S)-hydroxycholesterol in rat brain as measured with 18O2 techniques in vivo and in vitro. J Biol Chem 1997; 272: 30178–30184. [CrossRef] [PubMed] [Google Scholar]
- Bjorkhem I, et al. Cholesterol homeostasis in human brain: turnover of 24S-hydroxycholesterol and evidence for a cerebral origin of most of this oxysterol in the circulation. J Lipid Res 1998; 39: 1594–1600. [CrossRef] [PubMed] [Google Scholar]
- Calpe-Berdiel L, Escola-Gil JC, Blanco-Vaca F. New insights into the molecular actions of plant sterols and stanols in cholesterol metabolism. Atherosclerosis 2009; 203: 18–31. [CrossRef] [PubMed] [Google Scholar]
- Corder EH, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 1993; 261: 921–923. [CrossRef] [PubMed] [Google Scholar]
- Dietschy JM, Turley SD. Cholesterol metabolism in the brain. Curr Opin Lipidol 2001; 12: 105–112. [CrossRef] [PubMed] [Google Scholar]
- Eckert GP, et al. Regulation of central nervous system cholesterol homeostasis by the liver X receptor agonist TO-901317. Neurosci Lett 2007; 423: 47–52. [CrossRef] [PubMed] [Google Scholar]
- Frears ER, et al. The role of cholesterol in the biosynthesis of beta-amyloid. Neuroreport 1999; 10: 1699–1705. [CrossRef] [PubMed] [Google Scholar]
- Fricke CB, et al. Increased plant sterol and stanol levels in brain of Watanabe rabbits fed rapeseed oil derived plant sterol or stanol esters. Br J Nutr 2007; 98: 890–899. [CrossRef] [PubMed] [Google Scholar]
- Giannarelli C, et al. Synergistic effect of liver X receptor activation and simvastatin on plaque regression and stabilization: an magnetic resonance imaging study in a model of advanced atherosclerosis. Eur Heart J 2011. [PubMed] [Google Scholar]
- Gong JS, et al. Apolipoprotein E (ApoE) isoform-dependent lipid release from astrocytes prepared from human ApoE3 and ApoE4 knock-in mice. J Biol Chem 2002; 277: 29919–29926. [CrossRef] [PubMed] [Google Scholar]
- Haag MD, et al. Cyclooxygenase selectivity of nonsteroidal anti-inflammatory drugs and risk of stroke. Arch Intern Med 2008; 168: 1219–1224. [CrossRef] [PubMed] [Google Scholar]
- Heverin M, et al. Changes in the levels of cerebral and extracerebral sterols in the brain of patients with Alzheimer’s disease. J Lipid Res 2004; 45: 186–1893. [CrossRef] [PubMed] [Google Scholar]
- Jansen PJ, et al. Dietary plant sterols accumulate in the brain. Biochim Biophys Acta 2006; 1761: 445–453. [CrossRef] [PubMed] [Google Scholar]
- Jansen PJ, et al. Absence of ApoE upregulates murine brain ApoD and ABCA1 levels but does not affect brain sterol levels while human ApoE3 and human ApoE4 upregulate brain cholesterol precursor levels. J Alzheimers Dis 2009; 18: 319–329. [PubMed] [Google Scholar]
- Koldamova RP, et al. The liver X receptor ligand T0901317 decreases amyloid beta production in vitro and in a mouse model of Alzheimer’s disease. J Biol Chem 2005; 280: 4079–4088. [CrossRef] [PubMed] [Google Scholar]
- LaDu MJ, et al. Nascent astrocyte particles differ from lipoproteins in CSF. J Neurochem 1998; 70: 2070–2081. [CrossRef] [PubMed] [Google Scholar]
- Legleiter J, et al. In situ AFM studies of astrocyte-secreted apolipoprotein E- and J-containing lipoproteins. J Colloid Interface Sci 2004; 278: 96–106. [CrossRef] [PubMed] [Google Scholar]
- Lund EG, Guileyardo JM, Russell DW. cDNA cloning of cholesterol 24-hydroxylase a mediator of cholesterol homeostasis in the brain. Proc Natl Acad Sci U S A 1999; 96: 7238–7243. [CrossRef] [PubMed] [Google Scholar]
- Lutjohann D, et al. Cholesterol homeostasis in human brain: evidence for an age-dependent flux of 24S-hydroxycholesterol from the brain into the circulation. Proc Natl Acad Sci U S A 1996; 93: 9799–9804. [CrossRef] [PubMed] [Google Scholar]
- Lutjohann D, et al. Plasma 24S-hydroxycholesterol (cerebrosterol) is increased in Alzheimer and vascular demented patients. J Lipid Res 2000; 41: 195–198. [CrossRef] [PubMed] [Google Scholar]
- Marx J. Alzheimer’s disease. Bad for the heart bad for the mind? Science 2001; 294: 508–509. [CrossRef] [PubMed] [Google Scholar]
- Maxfield FR, Tabas I. Role of cholesterol and lipid organization in disease. Nature 2005; 438: 612–621. [CrossRef] [PubMed] [Google Scholar]
- Mulder M, et al. Reduced levels of cholesterol phospholipids and fatty acids in cerebrospinal fluid of Alzheimer disease patients are not related to apolipoprotein E4. Alzheimer Dis Assoc Disord 1998; 12: 198–203. [CrossRef] [PubMed] [Google Scholar]
- Mulder M, Terwel D. Possible link between lipid metabolism and cerebral amyloid angiopathy in Alzheimer’s disease: A role for high-density lipoproteins? Haemostasis 1998; 28: 174–194. [PubMed] [Google Scholar]
- Papassotiropoulos A, et al. 24S-hydroxycholesterol in cerebrospinal fluid is elevated in early stages of dementia. J Psychiatr Res 2002; 36: 27–32. [CrossRef] [PubMed] [Google Scholar]
- Pfrieger FW. Outsourcing in the brain: do neurons depend on cholesterol delivery by astrocytes? Bioessays 2003; 25: 72–78. [CrossRef] [PubMed] [Google Scholar]
- Pitas RE, et al. Lipoproteins and their receptors in the central nervous system. Characterization of the lipoproteins in cerebrospinal fluid and identification of apolipoprotein BE(LDL) receptors in the brain. J Biol Chem 1987; 262: 14352–14560. [CrossRef] [PubMed] [Google Scholar]
- Plat J, Nichols JA, Mensink RP. Plant sterols and stanols: effects on mixed micellar composition and LXR (target gene) activation. J Lipid Res 2005; 46: 2468–2476. [CrossRef] [PubMed] [Google Scholar]
- Plosch T, et al. Increased hepatobiliary and fecal cholesterol excretion upon activation of the liver X receptor is independent of ABCA1. J Biol Chem 2002; 277: 33870–33877. [CrossRef] [PubMed] [Google Scholar]
- Pollak OJ, Kritchevsky D. Sitosterol. Monogr Atheroscler 1981; 10: 1–219. [PubMed] [Google Scholar]
- Posse De Chaves EI, et al. Uptake of lipoproteins for axonal growth of sympathetic neurons. J Biol Chem 2000; 275: 19883–19890. [CrossRef] [PubMed] [Google Scholar]
- Puglielli L, et al. Acyl-coenzyme A: cholesterol acyltransferase modulates the generation of the amyloid beta-peptide. Nat Cell Biol 2001; 3: 905–912. [CrossRef] [PubMed] [Google Scholar]
- Puglielli L, et al. Role of acyl-coenzyme a: cholesterol acyltransferase activity in the processing of the amyloid precursor protein. J Mol Neurosci 2004; 24: 93–96. [CrossRef] [PubMed] [Google Scholar]
- Rebeck GW. Cholesterol efflux as a critical component of Alzheimer’s disease pathogenesis. J Mol Neurosci 2004; 23: 219–224. [CrossRef] [PubMed] [Google Scholar]
- Repa JJ, et al. Liver X receptor activation enhances cholesterol loss from the brain decreases neuroinflammation and increases survival of the NPC1 mouse. J Neurosci 2007; 27: 14470–14480. [CrossRef] [PubMed] [Google Scholar]
- Salen G, Ahrens Jr. EH, Grundy SM. Metabolism of beta-sitosterol in man. J Clin Invest 1970; 49: 952–967. [CrossRef] [PubMed] [Google Scholar]
- Shafaati M, et al. Levels of ApoE in cerebrospinal fluid are correlated with Tau and 24S-hydroxycholesterol in patients with cognitive disorders. Neurosci Lett 2007; 425: 78–82. [CrossRef] [PubMed] [Google Scholar]
- Simons M, et al. Cholesterol depletion inhibits the generation of beta-amyloid in hippocampal neurons. Proc Natl Acad Sci U S A 1998; 95: 6460–6464. [CrossRef] [PubMed] [Google Scholar]
- Sun Y, et al. Expression of liver X receptor target genes decreases cellular amyloid beta peptide secretion. J Biol Chem 2003; 278: 27688–27694. [CrossRef] [PubMed] [Google Scholar]
- Thelen KM, et al. Cholesterol synthesis rate in human hippocampus declines with aging. Neurosci Lett 2006; 403: 15–19. [CrossRef] [PubMed] [Google Scholar]
- Thompson GR, Grundy SM. History and development of plant sterol and stanol esters for cholesterol-lowering purposes. Am J Cardiol 2005; 96: 3D–9D. [CrossRef] [PubMed] [Google Scholar]
- Tint GS, et al. Correlation of severity and outcome with plasma sterol levels in variants of the Smith-Lemli-Opitz syndrome. J Pediatr 1995; 127: 82–87. [CrossRef] [PubMed] [Google Scholar]
- Vanmierlo T, et al. Liver X receptor activation restores memory in aged AD mice without reducing amyloid. Neurobiol Aging 2009. [PubMed] [Google Scholar]
- Vanmierlo T, et al. Alterations in brain cholesterol metabolism in the APPSLxPS1mut mouse a model for Alzheimer’s disease. J Alzheimers Dis 2010; 19: 117–127. [PubMed] [Google Scholar]
- Vanmierlo T, et al. Cerebral Accumulation of Dietary Derivable Plant Sterols does not Interfere with Memory and Anxiety Related Behavior in Abcg5-/- Mice. Plant Foods Hum Nutr 2011a. [Google Scholar]
- Vanmierlo T, et al. The plant sterol brassicasterol as additional CSF biomarker in Alzheimer’s disease. Acta Psychiatr Scand 2011b. [Google Scholar]
- Whitney KD, et al. Regulation of cholesterol homeostasis by the liver X receptors in the central nervous system. Mol Endocrinol 2002; 16: 1378–1385. [CrossRef] [PubMed] [Google Scholar]
- Wolozin B. Cholesterol and the biology of Alzheimer’s disease. Neuron 2004; 41: 7–10. [CrossRef] [PubMed] [Google Scholar]
- Xu Q, et al. Profile and regulation of apolipoprotein E (ApoE) expression in the CNS in mice with targeting of green fluorescent protein gene to the ApoE locus. J Neurosci 2006; 26: 4985–4994. [CrossRef] [PubMed] [Google Scholar]
- Yang H. Nonvesicular sterol transport: two protein families and a sterol sensor? Trends Cell Biol 2006; 16: 427–432. [CrossRef] [PubMed] [Google Scholar]
- Yu L, et al. Disruption of Abcg5 and Abcg8 in mice reveals their crucial role in biliary cholesterol secretion. Proc Natl Acad Sci U S A 2002; 99: 16237–16242. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.