Open Access
Review
Numéro |
OCL
Volume 31, 2024
Non-Food Uses Of Oil- And Protein- Crops / Usages Non Alimentaires des Oléoprotéagineux
|
|
---|---|---|
Numéro d'article | 11 | |
Nombre de pages | 9 | |
DOI | https://doi.org/10.1051/ocl/2024007 | |
Publié en ligne | 3 juin 2024 |
- Acyl Lipids: Pathways. Available from http://aralip.plantbiology.msu.edu/pathways/pathways (last consult: 2023/20/11). [Google Scholar]
- Almasi S, Ghobadian B, Najafi G, Soufi MD. 2021. A review on bio-lubricant production from non-edible oil-bearing biomass resources in Iran: recent progress and perspectives. J Cleaner Prod 290: 125830. [CrossRef] [Google Scholar]
- Asif M. 2011. Health effects of omega-3,6,9 fatty acids: Perilla frutescens is a good example of plant oils. Orient Pharm Exp Med 11: 51. [CrossRef] [PubMed] [Google Scholar]
- AT1G08510(FATB). Available from https://www.arabidopsis.org/servlets/TairObject?id=137248&type=locus (last consult: 2023/19/12). [Google Scholar]
- AT1G74960(FAB1). Available from https://www.arabidopsis.org/servlets/TairObject?id=29468&type=locus (last consult: 2023/19/12). [Google Scholar]
- AT2G29980(FAD3). Available from https://www.arabidopsis.org/servlets/TairObject?id=26541&type=locus (last consult: 2023/19/12). [Google Scholar]
- AT3G12120(FAD2). Available from https://www.arabidopsis.org/servlets/TairObject?id=39962&type=locus (last consult: 2023/19/12). [Google Scholar]
- AT4G34520(KCS18). Available from https://www.arabidopsis.org/servlets/TairObject?id=130056&type=locus (last consult: 2023/19/12). [Google Scholar]
- Bansal S, Durrett TP. 2016. Camelina sativa: an ideal platform for the metabolic engineering and field production of industrial lipids. Biochimie 120: 9–16. [CrossRef] [PubMed] [Google Scholar]
- Behera S, Priyadarshanee M, Vandana, Das S. 2022. Polyhydroxyalkanoates, the bioplastics of microbial origin: properties, biochemical synthesis, and their applications. Chemosphere 294: 133723. [CrossRef] [PubMed] [Google Scholar]
- Broekhof N, Herrendorf L. 2016. Synthetic Esters Derived from High Stability Oleic Acid. [Google Scholar]
- Camelina sativa - Search | ScienceDirect.com. Available from https://www.sciencedirect.com/search?qs=camelina sativa (last consult: 2023/19/12). [Google Scholar]
- Camelina sativa Genome Assembly Cs − NCBI − NLM. Available from https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_00633955.1/ (last consult: 2023/19/12). [Google Scholar]
- Camelina sativa Stearoyl-ACP Desaturase (SAD3) mRNA, Complete Cds − Nucleotide − NCBI. Available from https://www.ncbi.nlm.nih.gov/nuccore/JN 8311 60.1 (last consult: 2023/19/12). [Google Scholar]
- CARinata and CamelINA to Boost the Sustainable Diversification in EU Farming Systems | CARINA | Project | Fact Sheet | HORIZON | CORDIS | European Commission. Available from https://cordis.europa.eu/project/id/ 1010 81839/es (last consult: 2023/20/12). [Google Scholar]
- Cerone M, Smith TK. 2021. A brief journey into the history of and future sources and uses of fatty acids. Front Nutr 8: 570401. [CrossRef] [PubMed] [Google Scholar]
- CO2 Emissions - Our World in Data. Available from https://ourworldindata.org/co2-emissions (last consult: 2024/04/03). [Google Scholar]
- Cocuron JC, Anderson B, Boyd A, Alonso AP. 2014. Targeted metabolomics of Physaria Fendleri, an industrial crop producing hydroxy fatty acids. Plant Cell Physiol 55: 620–633. [CrossRef] [PubMed] [Google Scholar]
- Delangiz N, Varjovi MB, Lajayer BA, Ghorbanpour M. 2019. The potential of biotechnology for mitigation of greenhouse gasses effects: solutions, challenges, and future perspectives. Arab J Geosci 12: 1–14. [CrossRef] [Google Scholar]
- Drenth AC, Olsen DB, Denef K. 2015. Fuel property quantification of triglyceride blends with an emphasis on industrial oilseeds Camelina, Carinata, and Pennycress. Fuel 153: 19–30. [CrossRef] [Google Scholar]
- Erhan SZ, Asadauskas S. 2000. Lubricant basestocks from vegetable oils. Ind Crops Prod 11: 277–282. [CrossRef] [Google Scholar]
- Francis A, Warwick SI. 2009. The Biology of Canadian Weeds. 142. Camelina Alyssum (Mill.) Thell; C. Microcarpa Andrz. Ex DC; C. Sativa (L.) Crantz. Can J Plant Sci 89: 791–810. [Google Scholar]
- Gillingham K, Stock JH. 2018. The cost of reducing greenhouse gas emissions. J Econ Perspect 32: 53–72. [CrossRef] [Google Scholar]
- Gugel RK, Falk KC. 2011. Agronomic and seed quality evaluation of camelina sativa in Western Canada. Can J Plant Sci 86: 1047–1058. [Google Scholar]
- Horn PJ, et al. 2013. Imaging heterogeneity of membrane and storage lipids in transgenic camelina sativa seeds with altered fatty acid profiles. Plant J 76: 138–150. [CrossRef] [PubMed] [Google Scholar]
- Huu NB, Denner EB, Ha DT, Wanner G, Stan-Lotter H. Marinobacter aquaeolei sp. nov., a halophilic bacterium isolated from a Vietnamese oil-producing well. Int J Syst Bacteriol. 1999 Apr;49 Pt 2:367-75. doi: https://doi.org/10.1099/00207713-49-2-367 PMID: 10319457. [Google Scholar]
- Iven T, Hornung E, Heilmann M, Feussner I. 2016. Synthesis of oleyl oleate wax esters in arabidopsis thaliana and camelina sativa seed oil. Plant Biotechnol J 14: 252–259. [CrossRef] [PubMed] [Google Scholar]
- Jayakumar A, et al. 2023. Recent progress of bioplastics in their properties, standards, certifications and regulations: a review. Sci Total Environ 878: 163156. [CrossRef] [PubMed] [Google Scholar]
- Jiang WZ, et al. 2017. Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina Sativa, using CRISPR/Cas9 gene editing. Plant Biotechnol J 15: 648–657. [Google Scholar]
- King AE, Blesh J. 2018. Crop rotations for increased soil carbon: perenniality as a guiding principle. Ecol Appl 28: 249–261. [CrossRef] [PubMed] [Google Scholar]
- Krohn BJ, Fripp M. 2012. A life cycle assessment of biodiesel derived from the ‘niche Filling’ energy crop camelina in the USA. Appl Energy 92: 92–98. [CrossRef] [Google Scholar]
- La ONU Lucha Por Mantener Los Océanos Limpios de Plásticos | Noticias ONU. Available from https://news.un.org/es/story/2017/05/1378771 (last consult: 2023/19/12). [Google Scholar]
- Malik MR, et al. 2015. Production of high levels of poly-3-hydroxybutyrate in plastids of camelina sativa seeds. Plant Biotechnol J 13: 675–688. [CrossRef] [PubMed] [Google Scholar]
- Malik MR, et al. 2018. Camelina sativa, an oilseed at the nexus between model system and commercial crop. Plant Cell Rep 37: 1367–1381. [CrossRef] [PubMed] [Google Scholar]
- Manikandan NA, Pakshirajan K, Pugazhenthi G. 2021. Techno-economic assessment of a sustainable and cost-effective bioprocess for large scale production of polyhydroxybutyrate. Chemosphere 284. Available from https://pubmed.ncbi.nlm.nih.gov/34323807/ (last consult: 2023/19/12). [Google Scholar]
- Mathis JE, Gillet MC, Disselkoen H, Jambeck JR. 2022. Reducing ocean plastic pollution: locally led initiatives catalyzing change in South and Southeast Asia. Mar Policy 143:105127. https://doi.org/10.1016/j.marpol.2022.105127. [CrossRef] [Google Scholar]
- Matteo R, et al. 2023. Camelina Sativa (Cranz.) from minor crop to potential breakthrough. Negl Underutilized Crops: Future Smart Food: 781–801. [CrossRef] [Google Scholar]
- McNutt J, He QS. 2016. Development of biolubricants from vegetable oils via chemical modification. J Ind Eng Chem 36: 1–12. [CrossRef] [Google Scholar]
- Morineau C, et al. 2017. Selective gene dosage by CRISPR-Cas9 genome editing in hexaploid camelina sativa. Plant Biotechnol J 15: 729–739. [CrossRef] [PubMed] [Google Scholar]
- Nb H et al. 1999. Marinobacter Aquaeolei Sp. Nov., a halophilic bacterium isolated from a vietnamese oil-producing well. Int J Syst Bacteriol 49 Pt 2: 367–375. [CrossRef] [Google Scholar]
- Nguyen HT, et al. 2013. Camelina seed transcriptome: a tool for meal and oil improvement and translational research. Plant Biotechnol J 11: 759–769. [CrossRef] [PubMed] [Google Scholar]
- Nguyen HT, et al. 2015. Redirection of metabolic flux for high levels of omega-7 monounsaturated fatty acid accumulation in camelina seeds. Plant Biotechnol J 13: 38–50. [CrossRef] [PubMed] [Google Scholar]
- Nitbani FO, Tjitda PJP, Wogo HE, Rohi Detha AI. 2022. Preparation of ricinoleic acid from castor oil: a review. J Oleo Sci 71: 781–93. [CrossRef] [PubMed] [Google Scholar]
- Oleochemicals Market Size, Share & Trends Analysis, 2018. Available from https://www.globenewswire.com/news-release/2018/11/07/1647024/28124/en/2018Oleochemicals-Market-Size-Share-Trends-Analysis-Report.html (last consult: 2023/19/12). [Google Scholar]
- Oleochemicals Market Growth, Size, Share | Statistics, 2031. Available from https://www.transparencymarketresearch.com/global-oleochemicals-market.html (last consult: 2023/19/12). [Google Scholar]
- Oleochemicals Market Size, Share, Trends | Growth [2022−2029]. Available from https://www.fortunebusinessinsights.com/oleochemicals-market-106250 (last consult: 2023/19/12). [Google Scholar]
- Ozseyhan ME, Li P, et al. 2018. Improved fatty acid profiles in seeds of camelina sativa by artificial microRNA mediated FATB gene suppression. Biochem Biophys Res Commun 503: 621–624. [CrossRef] [PubMed] [Google Scholar]
- Ozseyhan ME, Kang J, Mu X, Lu C. 2018. Mutagenesis of the FAE1 genes significantly changes fatty acid composition in seeds of Camelina Sativa. Plant Physiol Biochem: PPB 123: 1–7. [Google Scholar]
- Palmeiro-Sánchez T, O’Flaherty V, Lens PNL. 2022. Polyhydroxyalkanoate bio-production and its rise as biomaterial of the future. J Biotechnol 348: 10–25. [CrossRef] [PubMed] [Google Scholar]
- Rodríguez-Rodríguez MF, et al. 2021. Lipid profiling and oil properties of camelina sativa seeds engineered to enhance the production of saturated and omega-7 fatty acids. Ind Crops Prod 170: 113765. [CrossRef] [Google Scholar]
- Rodríguez-Rodríguez MF. 2014. Caracterización Bioquímica de La Biosíntesis de Novo Y Modificación de Los Ácidos Grasos En La Semilla de. [Google Scholar]
- Rodríguez-Rodríguez MF, Salas JJ, Garcés R, Martínez-Force E. 2014. Acyl-ACP thioesterases from camelina sativa: cloning, enzymatic characterization and implication in seed oil fatty acid composition. Phytochemistry 107: 7–15. [CrossRef] [PubMed] [Google Scholar]
- Sainger M, et al. 2017. Advances in genetic improvement of camelina sativa for biofuel and industrial bio-products. Renew Sustain Energy Rev 68: 623–637. [CrossRef] [Google Scholar]
- Scrimgeour C, Gao Y, Oh WY, Shahidi F. 2020. Chemistry of Fatty Acids. Bailey’s Industrial Oil and Fat Products: 1–40. Available from https://onlinelibrary.wiley.com/doi/full/10.1002/047167849X.bio005.pub2 (last consult: 2023/19/12). [Google Scholar]
- Sembrando Un Futuro Sostenible | Camelina Company. Available from https://camelinacompany.es/?lang=es_ES (last consult: 2023/19/12). [Google Scholar]
- Snapp AR, Kang J, Qi X, Lu C. 2014. A fatty acid condensing enzyme from physaria fendleri increases hydroxy fatty acid accumulation in transgenic oilseeds of camelina sativa. Planta 240: 599–610. [CrossRef] [PubMed] [Google Scholar]
- Syngenta Seeds and Sustainable Oils Agree to Sell Camelina Seed | Biofuels International Magazine. Available from https://biofuels-news.com/news/syngenta-seeds-and-sustainable-oils-announce-commercial-agreement-to-sell-camelina-seed/ (last consult: 2023/19/12). [Google Scholar]
- Tejera N, et al. 2016. A transgenic camelina sativa seed oil effectively replaces fish oil as a dietary source of eicosapentaenoic acid in mice. J Nutr 146: 227–235. [CrossRef] [PubMed] [Google Scholar]
- Tilsted JP, et al. 2023. Ending fossil-based growth: confronting the political economy of petrochemical plastics. One Earth 6: 607–619. [CrossRef] [Google Scholar]
- United Airlines. Available from https://www.ofimagazine.com/content-images/news/Camelina_ 2020 −11- 12–165216. pdf (last consult: 2023/19/12). [Google Scholar]
- UNL | With $12M Grant, Husker-Led Team Exploiting Oilseeds’ Potential in Biofuels, Bioproducts | Office of Research & Economic Development. Available from https://research.unl.edu/blog/with-12m-grant-husker-led-team-exploiting-oilseeds-potential-in-biofuels-bioproducts/ (last consult: 2023/19/12). [Google Scholar]
- Usher S, Haslam RP, Ruiz-Lopez N, Sayanova O, Napier JA. Field trial evaluation of the accumulation of omega-3 long chain polyunsaturated fatty acids in transgenic Camelina sativa: Making fish oil substitutes in plants. Metab Eng Commun. 2015 Jul 9;2:93-98. doi: https://doi.org/10.1016/j.meteno.2015.04.002. PMID: 27066395; PMCID: PMC4802427 [Google Scholar]
- Vanhercke T, et al. 2013. Metabolic engineering of plant oils and waxes for use as industrial feedstocks. Plant Biotechnol J 11: 197–210. [CrossRef] [PubMed] [Google Scholar]
- Yield10 Bioscience and BioMar Aim to Grow Fish Oil on Land | BioMar. Available from https://www.biomar.com/en/global/articles/press-releases/yield10-bioscience-and-biomar-aim-to-grow-fish-oil-on-land/ (last consult: 2023/19/12). [Google Scholar]
- Zhu LH, et al. 2016. Dedicated industrial oilseed crops as metabolic engineering platforms for sustainable industrial feedstock production. Sci Rep 6: 1–11. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.