Open Access
Review
Issue |
OCL
Volume 31, 2024
Non-Food Uses Of Oil- And Protein- Crops / Usages Non Alimentaires des Oléoprotéagineux
|
|
---|---|---|
Article Number | 11 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/ocl/2024007 | |
Published online | 03 June 2024 |
- Acyl Lipids: Pathways. Available from http://aralip.plantbiology.msu.edu/pathways/pathways (last consult: 2023/20/11). [Google Scholar]
- Almasi S, Ghobadian B, Najafi G, Soufi MD. 2021. A review on bio-lubricant production from non-edible oil-bearing biomass resources in Iran: recent progress and perspectives. J Cleaner Prod 290: 125830. [CrossRef] [Google Scholar]
- Asif M. 2011. Health effects of omega-3,6,9 fatty acids: Perilla frutescens is a good example of plant oils. Orient Pharm Exp Med 11: 51. [CrossRef] [PubMed] [Google Scholar]
- AT1G08510(FATB). Available from https://www.arabidopsis.org/servlets/TairObject?id=137248&type=locus (last consult: 2023/19/12). [Google Scholar]
- AT1G74960(FAB1). Available from https://www.arabidopsis.org/servlets/TairObject?id=29468&type=locus (last consult: 2023/19/12). [Google Scholar]
- AT2G29980(FAD3). Available from https://www.arabidopsis.org/servlets/TairObject?id=26541&type=locus (last consult: 2023/19/12). [Google Scholar]
- AT3G12120(FAD2). Available from https://www.arabidopsis.org/servlets/TairObject?id=39962&type=locus (last consult: 2023/19/12). [Google Scholar]
- AT4G34520(KCS18). Available from https://www.arabidopsis.org/servlets/TairObject?id=130056&type=locus (last consult: 2023/19/12). [Google Scholar]
- Bansal S, Durrett TP. 2016. Camelina sativa: an ideal platform for the metabolic engineering and field production of industrial lipids. Biochimie 120: 9–16. [CrossRef] [PubMed] [Google Scholar]
- Behera S, Priyadarshanee M, Vandana, Das S. 2022. Polyhydroxyalkanoates, the bioplastics of microbial origin: properties, biochemical synthesis, and their applications. Chemosphere 294: 133723. [CrossRef] [PubMed] [Google Scholar]
- Broekhof N, Herrendorf L. 2016. Synthetic Esters Derived from High Stability Oleic Acid. [Google Scholar]
- Camelina sativa - Search | ScienceDirect.com. Available from https://www.sciencedirect.com/search?qs=camelina sativa (last consult: 2023/19/12). [Google Scholar]
- Camelina sativa Genome Assembly Cs − NCBI − NLM. Available from https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_00633955.1/ (last consult: 2023/19/12). [Google Scholar]
- Camelina sativa Stearoyl-ACP Desaturase (SAD3) mRNA, Complete Cds − Nucleotide − NCBI. Available from https://www.ncbi.nlm.nih.gov/nuccore/JN 8311 60.1 (last consult: 2023/19/12). [Google Scholar]
- CARinata and CamelINA to Boost the Sustainable Diversification in EU Farming Systems | CARINA | Project | Fact Sheet | HORIZON | CORDIS | European Commission. Available from https://cordis.europa.eu/project/id/ 1010 81839/es (last consult: 2023/20/12). [Google Scholar]
- Cerone M, Smith TK. 2021. A brief journey into the history of and future sources and uses of fatty acids. Front Nutr 8: 570401. [CrossRef] [PubMed] [Google Scholar]
- CO2 Emissions - Our World in Data. Available from https://ourworldindata.org/co2-emissions (last consult: 2024/04/03). [Google Scholar]
- Cocuron JC, Anderson B, Boyd A, Alonso AP. 2014. Targeted metabolomics of Physaria Fendleri, an industrial crop producing hydroxy fatty acids. Plant Cell Physiol 55: 620–633. [CrossRef] [PubMed] [Google Scholar]
- Delangiz N, Varjovi MB, Lajayer BA, Ghorbanpour M. 2019. The potential of biotechnology for mitigation of greenhouse gasses effects: solutions, challenges, and future perspectives. Arab J Geosci 12: 1–14. [CrossRef] [Google Scholar]
- Drenth AC, Olsen DB, Denef K. 2015. Fuel property quantification of triglyceride blends with an emphasis on industrial oilseeds Camelina, Carinata, and Pennycress. Fuel 153: 19–30. [CrossRef] [Google Scholar]
- Erhan SZ, Asadauskas S. 2000. Lubricant basestocks from vegetable oils. Ind Crops Prod 11: 277–282. [CrossRef] [Google Scholar]
- Francis A, Warwick SI. 2009. The Biology of Canadian Weeds. 142. Camelina Alyssum (Mill.) Thell; C. Microcarpa Andrz. Ex DC; C. Sativa (L.) Crantz. Can J Plant Sci 89: 791–810. [Google Scholar]
- Gillingham K, Stock JH. 2018. The cost of reducing greenhouse gas emissions. J Econ Perspect 32: 53–72. [CrossRef] [Google Scholar]
- Gugel RK, Falk KC. 2011. Agronomic and seed quality evaluation of camelina sativa in Western Canada. Can J Plant Sci 86: 1047–1058. [Google Scholar]
- Horn PJ, et al. 2013. Imaging heterogeneity of membrane and storage lipids in transgenic camelina sativa seeds with altered fatty acid profiles. Plant J 76: 138–150. [CrossRef] [PubMed] [Google Scholar]
- Huu NB, Denner EB, Ha DT, Wanner G, Stan-Lotter H. Marinobacter aquaeolei sp. nov., a halophilic bacterium isolated from a Vietnamese oil-producing well. Int J Syst Bacteriol. 1999 Apr;49 Pt 2:367-75. doi: https://doi.org/10.1099/00207713-49-2-367 PMID: 10319457. [Google Scholar]
- Iven T, Hornung E, Heilmann M, Feussner I. 2016. Synthesis of oleyl oleate wax esters in arabidopsis thaliana and camelina sativa seed oil. Plant Biotechnol J 14: 252–259. [CrossRef] [PubMed] [Google Scholar]
- Jayakumar A, et al. 2023. Recent progress of bioplastics in their properties, standards, certifications and regulations: a review. Sci Total Environ 878: 163156. [CrossRef] [PubMed] [Google Scholar]
- Jiang WZ, et al. 2017. Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina Sativa, using CRISPR/Cas9 gene editing. Plant Biotechnol J 15: 648–657. [Google Scholar]
- King AE, Blesh J. 2018. Crop rotations for increased soil carbon: perenniality as a guiding principle. Ecol Appl 28: 249–261. [CrossRef] [PubMed] [Google Scholar]
- Krohn BJ, Fripp M. 2012. A life cycle assessment of biodiesel derived from the ‘niche Filling’ energy crop camelina in the USA. Appl Energy 92: 92–98. [CrossRef] [Google Scholar]
- La ONU Lucha Por Mantener Los Océanos Limpios de Plásticos | Noticias ONU. Available from https://news.un.org/es/story/2017/05/1378771 (last consult: 2023/19/12). [Google Scholar]
- Malik MR, et al. 2015. Production of high levels of poly-3-hydroxybutyrate in plastids of camelina sativa seeds. Plant Biotechnol J 13: 675–688. [CrossRef] [PubMed] [Google Scholar]
- Malik MR, et al. 2018. Camelina sativa, an oilseed at the nexus between model system and commercial crop. Plant Cell Rep 37: 1367–1381. [CrossRef] [PubMed] [Google Scholar]
- Manikandan NA, Pakshirajan K, Pugazhenthi G. 2021. Techno-economic assessment of a sustainable and cost-effective bioprocess for large scale production of polyhydroxybutyrate. Chemosphere 284. Available from https://pubmed.ncbi.nlm.nih.gov/34323807/ (last consult: 2023/19/12). [Google Scholar]
- Mathis JE, Gillet MC, Disselkoen H, Jambeck JR. 2022. Reducing ocean plastic pollution: locally led initiatives catalyzing change in South and Southeast Asia. Mar Policy 143:105127. https://doi.org/10.1016/j.marpol.2022.105127. [CrossRef] [Google Scholar]
- Matteo R, et al. 2023. Camelina Sativa (Cranz.) from minor crop to potential breakthrough. Negl Underutilized Crops: Future Smart Food: 781–801. [CrossRef] [Google Scholar]
- McNutt J, He QS. 2016. Development of biolubricants from vegetable oils via chemical modification. J Ind Eng Chem 36: 1–12. [CrossRef] [Google Scholar]
- Morineau C, et al. 2017. Selective gene dosage by CRISPR-Cas9 genome editing in hexaploid camelina sativa. Plant Biotechnol J 15: 729–739. [CrossRef] [PubMed] [Google Scholar]
- Nb H et al. 1999. Marinobacter Aquaeolei Sp. Nov., a halophilic bacterium isolated from a vietnamese oil-producing well. Int J Syst Bacteriol 49 Pt 2: 367–375. [CrossRef] [Google Scholar]
- Nguyen HT, et al. 2013. Camelina seed transcriptome: a tool for meal and oil improvement and translational research. Plant Biotechnol J 11: 759–769. [CrossRef] [PubMed] [Google Scholar]
- Nguyen HT, et al. 2015. Redirection of metabolic flux for high levels of omega-7 monounsaturated fatty acid accumulation in camelina seeds. Plant Biotechnol J 13: 38–50. [CrossRef] [PubMed] [Google Scholar]
- Nitbani FO, Tjitda PJP, Wogo HE, Rohi Detha AI. 2022. Preparation of ricinoleic acid from castor oil: a review. J Oleo Sci 71: 781–93. [CrossRef] [PubMed] [Google Scholar]
- Oleochemicals Market Size, Share & Trends Analysis, 2018. Available from https://www.globenewswire.com/news-release/2018/11/07/1647024/28124/en/2018Oleochemicals-Market-Size-Share-Trends-Analysis-Report.html (last consult: 2023/19/12). [Google Scholar]
- Oleochemicals Market Growth, Size, Share | Statistics, 2031. Available from https://www.transparencymarketresearch.com/global-oleochemicals-market.html (last consult: 2023/19/12). [Google Scholar]
- Oleochemicals Market Size, Share, Trends | Growth [2022−2029]. Available from https://www.fortunebusinessinsights.com/oleochemicals-market-106250 (last consult: 2023/19/12). [Google Scholar]
- Ozseyhan ME, Li P, et al. 2018. Improved fatty acid profiles in seeds of camelina sativa by artificial microRNA mediated FATB gene suppression. Biochem Biophys Res Commun 503: 621–624. [CrossRef] [PubMed] [Google Scholar]
- Ozseyhan ME, Kang J, Mu X, Lu C. 2018. Mutagenesis of the FAE1 genes significantly changes fatty acid composition in seeds of Camelina Sativa. Plant Physiol Biochem: PPB 123: 1–7. [Google Scholar]
- Palmeiro-Sánchez T, O’Flaherty V, Lens PNL. 2022. Polyhydroxyalkanoate bio-production and its rise as biomaterial of the future. J Biotechnol 348: 10–25. [CrossRef] [PubMed] [Google Scholar]
- Rodríguez-Rodríguez MF, et al. 2021. Lipid profiling and oil properties of camelina sativa seeds engineered to enhance the production of saturated and omega-7 fatty acids. Ind Crops Prod 170: 113765. [CrossRef] [Google Scholar]
- Rodríguez-Rodríguez MF. 2014. Caracterización Bioquímica de La Biosíntesis de Novo Y Modificación de Los Ácidos Grasos En La Semilla de. [Google Scholar]
- Rodríguez-Rodríguez MF, Salas JJ, Garcés R, Martínez-Force E. 2014. Acyl-ACP thioesterases from camelina sativa: cloning, enzymatic characterization and implication in seed oil fatty acid composition. Phytochemistry 107: 7–15. [CrossRef] [PubMed] [Google Scholar]
- Sainger M, et al. 2017. Advances in genetic improvement of camelina sativa for biofuel and industrial bio-products. Renew Sustain Energy Rev 68: 623–637. [CrossRef] [Google Scholar]
- Scrimgeour C, Gao Y, Oh WY, Shahidi F. 2020. Chemistry of Fatty Acids. Bailey’s Industrial Oil and Fat Products: 1–40. Available from https://onlinelibrary.wiley.com/doi/full/10.1002/047167849X.bio005.pub2 (last consult: 2023/19/12). [Google Scholar]
- Sembrando Un Futuro Sostenible | Camelina Company. Available from https://camelinacompany.es/?lang=es_ES (last consult: 2023/19/12). [Google Scholar]
- Snapp AR, Kang J, Qi X, Lu C. 2014. A fatty acid condensing enzyme from physaria fendleri increases hydroxy fatty acid accumulation in transgenic oilseeds of camelina sativa. Planta 240: 599–610. [CrossRef] [PubMed] [Google Scholar]
- Syngenta Seeds and Sustainable Oils Agree to Sell Camelina Seed | Biofuels International Magazine. Available from https://biofuels-news.com/news/syngenta-seeds-and-sustainable-oils-announce-commercial-agreement-to-sell-camelina-seed/ (last consult: 2023/19/12). [Google Scholar]
- Tejera N, et al. 2016. A transgenic camelina sativa seed oil effectively replaces fish oil as a dietary source of eicosapentaenoic acid in mice. J Nutr 146: 227–235. [CrossRef] [PubMed] [Google Scholar]
- Tilsted JP, et al. 2023. Ending fossil-based growth: confronting the political economy of petrochemical plastics. One Earth 6: 607–619. [CrossRef] [Google Scholar]
- United Airlines. Available from https://www.ofimagazine.com/content-images/news/Camelina_ 2020 −11- 12–165216. pdf (last consult: 2023/19/12). [Google Scholar]
- UNL | With $12M Grant, Husker-Led Team Exploiting Oilseeds’ Potential in Biofuels, Bioproducts | Office of Research & Economic Development. Available from https://research.unl.edu/blog/with-12m-grant-husker-led-team-exploiting-oilseeds-potential-in-biofuels-bioproducts/ (last consult: 2023/19/12). [Google Scholar]
- Usher S, Haslam RP, Ruiz-Lopez N, Sayanova O, Napier JA. Field trial evaluation of the accumulation of omega-3 long chain polyunsaturated fatty acids in transgenic Camelina sativa: Making fish oil substitutes in plants. Metab Eng Commun. 2015 Jul 9;2:93-98. doi: https://doi.org/10.1016/j.meteno.2015.04.002. PMID: 27066395; PMCID: PMC4802427 [Google Scholar]
- Vanhercke T, et al. 2013. Metabolic engineering of plant oils and waxes for use as industrial feedstocks. Plant Biotechnol J 11: 197–210. [CrossRef] [PubMed] [Google Scholar]
- Yield10 Bioscience and BioMar Aim to Grow Fish Oil on Land | BioMar. Available from https://www.biomar.com/en/global/articles/press-releases/yield10-bioscience-and-biomar-aim-to-grow-fish-oil-on-land/ (last consult: 2023/19/12). [Google Scholar]
- Zhu LH, et al. 2016. Dedicated industrial oilseed crops as metabolic engineering platforms for sustainable industrial feedstock production. Sci Rep 6: 1–11. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.