Numéro
OCL
Volume 30, 2023
Non-Food Uses Of Oil- And Protein- Crops / Usages Non Alimentaires des Oléoprotéagineux
Numéro d'article 25
Nombre de pages 16
Section Innovation
DOI https://doi.org/10.1051/ocl/2023028
Publié en ligne 7 décembre 2023
  • Amalia Kartika I, Evon Ph, Cerny M, et al. 2016. Simultaneous solvent extraction and transesterification of jatropha oil for biodiesel production, and potential application of the obtained cakes for binderless particleboard. Fuel 181: 870–877. [CrossRef] [Google Scholar]
  • Anglès MN, Reguant J, Montané D, Ferrando F, Farriol X, Salvadó J. 1999. Binderless composites from pretreated residual softwood. J Appl Polym Sci 73: 2485–2491. [CrossRef] [Google Scholar]
  • Anglès MN, Ferrando F, Farriol X, Salvadó J. 2001. Suitability of steam exploded residual softwood for the production of binderless panels. Effect of the pre-treatment severity and lignin addition. Biomass Bioenergy 21: 211–224. [CrossRef] [Google Scholar]
  • Domínguez-Robles J, Tarrés Q, Delgado-Aguilar M, Rodríguez A, Espinach FX, Mutjé P. 2017. Approaching a new generation of fiberboards taking advantage of self lignin as green adhesive. Int J Biol Macromol 108: 927–935. [Google Scholar]
  • Evon Ph, Vandenbossche V, Pontalier PY, Rigal L. 2014a. New thermal insulation fiberboards from cake generated during biorefinery of sunflower whole plant in a twin-screw extruder. Ind Crops Prod 52: 354–362. [CrossRef] [Google Scholar]
  • Evon Ph, Amalia Kartika I, Rigal L. 2014b. New renewable and biodegradable particleboards from jatropha press cakes. J Renew Mater 2: 52665. [Google Scholar]
  • Evon Ph, Vinet J, Labonne L, Rigal L. 2015a. Influence of thermo-pressing conditions on mechanical properties of biodegradable fiberboards made from a deoiled sunflower cake. Ind Crops Prod 65: 117–126. [CrossRef] [Google Scholar]
  • Evon Ph, Vandenbossche V, Labonne L, Vinet J, Pontalier PY, Rigal L. 2015b. The thermo-mechano-chemical twin-screw reactor, a new perspective for the biorefinery of sunflower whole plant: aqueous extraction of oil and other biopolymers, and production of biodegradable fiberboards from solid raffinate. OCL − Oilseeds fats Crops Lipids 23: D505. [Google Scholar]
  • Evon Ph, Vinet J, Rigal M, Labonne L, Vandenbossche V, Rigal L. 2015c. New insulation fiberboards from sunflower cake with improved thermal and mechanical properties. J Agric Stud 3: 194–211. [Google Scholar]
  • Evon Ph, Barthod-Malat B, Grégoire M, et al. 2019. Production of fiberboards from shives collected after continuous fibre mechanical extraction from oleaginous flax. J Nat Fibers 16: 453–469. [CrossRef] [Google Scholar]
  • Evon Ph. 2021. Natural fiber based composites, 1st ed. MDPI: Special Issue, Coatings, 11: 1031. [Google Scholar]
  • Evon Ph, Labonne L, Khan SU, Ouagne P, Pontalier PY, Rouilly A. 2021a. Twin-screw extrusion process to produce renewable fiberboards. J Vis Exp e 62072. [Google Scholar]
  • Evon Ph, de Langalerie G, Labonne L, et al. 2021b. Low-density insulation blocks and hardboards from amaranth (Amaranthus cruentus) stems, a new perspective for building applications. Coatings 11: 349. [CrossRef] [Google Scholar]
  • Evon Ph. 2023. Natural fiber based composites II, 1st ed. MDPI: Special Issue, Coatings, 13: 1694. [Google Scholar]
  • Gamon G, Evon Ph, Rigal L. 2013. Twin-screw extrusion impact on natural fibre morphology and material properties in poly (lactic acid) based biocomposites. Ind Crops Prod 46: 173–185. [CrossRef] [Google Scholar]
  • Gautreau M, Kervoelen A, Barteau G, et al. 2021. Fibre individualisation and mechanical properties of a flax-PLA non-woven composite following physical pre-treatments. Coatings 11: 846. [CrossRef] [Google Scholar]
  • Gomez-Campos A, Sablayrolles C, Hamelin L, Rouilly A, Evon Ph, Vialle C. 2023. Towards fossil-carbon free buildings: Production and environmental performance of innovative sound absorbing panels made from sunflower straw. J Clean Prod 400: 136620. [CrossRef] [Google Scholar]
  • Halvarsson S, Edlund H, Norgren M. 2009. Manufacture of non-resin wheat straw fibreboards. Ind Crops Prod 29: 437–445. [CrossRef] [Google Scholar]
  • Hashim R, Said N, Lamaming J, et al. 2011. Influence of press temperature on the properties of binderless particleboard made from oil palm trunk. Mater Des 32: 2520–2525. [CrossRef] [Google Scholar]
  • Hatakeyama T, Hatakeyama H. 2004. Thermal properties of green polymers and biocomposites. Dordrecht: Kluwer Academic Publishers. [Google Scholar]
  • Hidayat H, Keijsers ERP, Prijanto U, Van Dam JEG, Heeres HJ. 2014. Preparation and properties of binderless boards from Jatropha curcas L. seed cake. Ind Crops Prod 52: 245–254. [CrossRef] [Google Scholar]
  • Khalid M, Imran R, Arif Z, et al. 2021. Developments in chemical treatments, manufacturing techniques and potential applications of natural-fibers-based biodegradable composites. Coatings 11: 293. [CrossRef] [Google Scholar]
  • Khan SU, Labonne L, Ouagne P, Evon Ph. 2021. Continuous mechanical extraction of fibres from linseed flax straw for subsequent geotextile applications. Coatings 11: 852. [CrossRef] [Google Scholar]
  • Laborel-Préneron A, Ampe C, Labonne L, Magniont C, Evon Ph. 2022. Thermal insulation blocks made of sunflower pith particles and polysaccharide-based binders: influence of binder type and content on their characteristics. Constr Technol Archit 1: 43–50. [CrossRef] [Google Scholar]
  • Laqraa C, Ferreira M, Rashed Labanieh A, Soulat D. 2021. Elaboration by wrapping process and multiscale characterisation of thermoplastic bio-composite based on hemp/PA11 constituents. Coatings 11: 770. [CrossRef] [Google Scholar]
  • Li J, Evon Ph, Ballas S, et al. 2022. Sunflower bark extract as a biostimulant suppresses reactive oxygen species in salt-stressed Arabidopsis. Front Plant Sci 13: 837441. [CrossRef] [PubMed] [Google Scholar]
  • Li J, Khai Trinh H, Tricoulet L, et al. 2023. Under review. Biorefinery of sunflower by-products: optimization of twin-screw extrusion for novel biostimulants. J Clean Prod (submitted to journal July 7, 2023). [Google Scholar]
  • Lyu L, Zhang D, Tian Y, Zhou X. 2021. Sound-absorption performance and fractal dimension feature of kapok fibre/polycaprolactone composites. Coatings 11: 1000. [CrossRef] [Google Scholar]
  • Maréchal P. 2001. Analyse des principaux facteurs impliqués dans le fractionnement combiné de pailles et de sons de blé en extrudeur bi-vis : obtention d’agromatériaux, Ph.D. tesis. France: INP, Toulouse. [Google Scholar]
  • Mason W. 1928. Process of making structural insulating boards of exploded lignocellulose fiber. Laurel: MF Company. [Google Scholar]
  • Mati-Baouche N, Elchinger PH, de Baynast H, Pierre G, Delattre C, Michaud P. 2014a. Chitosan as an adhesive. Eur Polym J 60: 198–212. [CrossRef] [Google Scholar]
  • Mati-Baouche N, de Baynast H, Lebert A, et al. 2014b. Mechanical, thermal and acoustical characterizations of an insulating bio-based composite made from sunflower stalks particles and chitosan. Ind Crops Prod 58: 244–250. [CrossRef] [Google Scholar]
  • Nonaka S, Umemura K, Kawai S. 2013. Characterization of bagasse binderless particleboard manufactured in high-temperature range. J Wood Sci 59: 50–56. [CrossRef] [Google Scholar]
  • Okuda N, Sato M. 2004. Manufacture and mechanical properties of binderless boards from kenaf core. J Wood Sci 50: 53–61. [CrossRef] [Google Scholar]
  • Okuda N, Sato M. 2006. Water resistance properties of kenaf core binderless boards. J Wood Sci 52: 422–428. [CrossRef] [Google Scholar]
  • Orliac O, Rouilly A, Silvestre F, Rigal L. 2003. Effects of various plasticizers on the mechanical properties, water resistance and aging of thermo-moulded films made from sunflower proteins. Ind Crops Prod 18: 91–100. [CrossRef] [Google Scholar]
  • Pintiaux T, Viet D, Vandenbossche V, Rigal L, Rouilly A. 2015. Binderless materials obtained by thermo-compressive processing of lignocellulosic fibers: a comprehensive review. BioResources 10: 1915–1963. [CrossRef] [Google Scholar]
  • Quintana G, Velásquez J, Betancourt S, Gañán P. 2009. Binderless fiberboard from steam exploded banana bunch. Ind Crops Prod 29: 60–66. [CrossRef] [Google Scholar]
  • Ratsimbazafy HH, Laborel-Préneron A, Magniont C, Evon Ph. 2021. A review of the multi-physical characteristics of plant aggregates and their effects on the properties of plant-based concretes. Recent Prog Mater 3: 69. [CrossRef] [Google Scholar]
  • Rouilly A, Orliac O, Silvestre F, Rigal L. 2006. New natural injection-moldable composite material from sunflower oil cake. Bioresour Technol 97: 553–561. [CrossRef] [PubMed] [Google Scholar]
  • Salthammer T, Mentese S, Marutzky R. 2010. Formaldehyde in the indoor environment. Chem Rev 110: 2536–2572. [CrossRef] [PubMed] [Google Scholar]
  • Simon V, Uitterhaegen E, Robillard A, et al. 2020. VOC and carbonyl compound emissions of a fiberboard resulting from a coriander biorefinery: comparison with two commercial wood-based building materials. Environ Sci Pollut Res 27: 16121–16133. [CrossRef] [PubMed] [Google Scholar]
  • Tajuddin M, Ahmad Z, Ismail H. 2016. A review of natural fibers and processing operations for the production of binderless boards. BioResources 11: 5600–5617. [CrossRef] [Google Scholar]
  • Takahashi I, Sugimoto T, Takasu Y, Yamasaki M, Sasaki Y, Kikata Y. 2010. Preparation of thermoplastic molding from steamed japanese beech flour. Holzforschung 64: 229–234. [CrossRef] [Google Scholar]
  • Theng D, Arbat G, Delgado-Aguilar M, et al. 2019. Production of fiberboards from rice straw thermo-mechanical extrudates using thermopressing: influence of fiber morphology, water addition and lignin content. Eur J Wood Wood Prod 77: 15–32. [CrossRef] [Google Scholar]
  • Tjeerdsma BF, Boonstra M, Pizzi A, Tekely P, Militz H. 1998. Characterisation of thermally modified wood: Molecular reasons for wood performance improvement. Holz Roh-Werkst 56: 149. [CrossRef] [Google Scholar]
  • Uitterhaegen E, Labonne L, Merah O, et al. 2016. Optimization of thermopressing conditions for the production of binderless boards from a coriander twin-screw extrusion cake. J Appl Polym Sci 134: 44650. [Google Scholar]
  • Uitterhaegen E, Labonne L, Merah O, et al. 2017. Impact of a thermomechanical fiber pre-treatment using twin-screw extrusion on the production and properties of renewable binderless coriander fiberboards. Int J Mol Sci 18: 1539. [CrossRef] [PubMed] [Google Scholar]
  • Uitterhaegen E, Parinet J, Labonne L, et al. 2018a. Performance, durability and recycling of thermoplastic biocomposites reinforced with coriander straw. Compos Part A Appl Sci Manuf 113: 254–263. [CrossRef] [Google Scholar]
  • Uitterhaegen E, Burianová K, Ballas S, et al. 2018b. Characterization of volatile organic compound emissions from self-bonded boards resulting from a coriander biorefinery. Ind Crops Prod 122: 57–65. [CrossRef] [Google Scholar]
  • Uitterhaegen E, Labonne L, Merah O, et al. 2020. Innovative insulating materials from coriander (Coriandrum sativum L.) straw for building applications. J Agric Stud 8: https://doi.org/10.5296/jas.v8i4.17077. [Google Scholar]
  • Van Dam JEG, Van den Oever MJA, Keijsers ERP. 2004a. Production process for high density high performance binderless boards from whole coconut husk. Ind Crops Prod 20: 97–101. [CrossRef] [Google Scholar]
  • Van Dam JEG, Van den Oever MJA, Teunissen W, Keijsers ERP, Peralta AG. 2004b. Process for production of high density/high performance binderless boards from whole coconut husk: Part 1: Lignin as intrinsic thermosetting binder resin. Ind Crops Prod 19: 207–216. [Google Scholar]
  • Van Soest PJ, Wine RH. 1967. Use of detergents in the analysis of fibrous feeds. IV. Determination of plant cell wall constituents. J AOAC Int 50: 50–55. [CrossRef] [Google Scholar]
  • Van Soest PJ, Wine RH. 1968. Determination of lignin and cellulose in acid detergent fiber with permanganate. J AOAC Int 51: 780–785. [CrossRef] [Google Scholar]
  • Velásquez JA, Ferrando F, Salvadó J. 2002. Binderless fiberboard from steam exploded miscanthus sinensis: The effect of a grinding process. Holz Roh-Werkst 60: 297–302. [CrossRef] [Google Scholar]
  • Velásquez JA, Ferrando F, Farriol X, Salvadó J. 2003. Binderless fiberboard from steam exploded miscanthus sinensis. Wood Sci Technol 37: 269–278. [CrossRef] [Google Scholar]
  • Verdier T, Balthazard L, Montibus M, Magniont C, Evon Ph, Bertron A. 2020. Using glycerol esters to prevent microbial growth on sunflower-based insulation panels. Proc Inst Civ Eng: Constr. https://doi.org/10.1680/jcoma.20.00002. [Google Scholar]
  • Xu J, Widyorini R, Yamauchi H, Kawai S. 2006. Development of binderless fiberboard from kenaf core. J Wood Sci 52: 236–243. [CrossRef] [Google Scholar]
  • Yamashita O, Imanishi H, Kanayama K. 2007. Transfer molding of bamboo. J Mater Process Technol 192: 259–264. [CrossRef] [Google Scholar]
  • Yamashita O, Yokochi H, Miki T, Kanayama K. 2009. The pliability of wood and its application to molding. J Mater Process Technol 209: 5239–5244. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.