Open Access
Numéro |
OCL
Volume 29, 2022
Organic foods in the oil & protein crop supply chain / Le « Bio » dans la filière oléoprotéagineuse
|
|
---|---|---|
Numéro d'article | 32 | |
Nombre de pages | 8 | |
DOI | https://doi.org/10.1051/ocl/2022026 | |
Publié en ligne | 22 août 2022 |
- Abad A, Shahidi F. 2020. Compositional characteristics and oxidative stability of chia seed oil (Salvia hispanica L.). Food Prod Proc Nutr 2: 9. https://doi.org/10.1186/s43014-020-00024-y. [Google Scholar]
- Amato M, Caruso MC, Guzzo F, et al. 2015. Nutritional quality of seeds and leaf metabolites of chia (Salvia hispanica L.) from southern Italy. Eur Food Res Technol 241: 615–625. https://doi.org/10.1007/s00217-015-2488-9. [CrossRef] [Google Scholar]
- Arpitha M, Rajesh M, Devika Rani K, Ramachandra Setty S. 2019. Evaluation of anti-osteoarthritic activity of chia seeds (Salvia hispanica L.) in rats. WJPPS 8: 745–756. https://doi.org/10.20959/wjpps20196-13779. [Google Scholar]
- Ayerza R. 1995. Oil content and fatty acid composition of chia (Salvia hispanica L.) from five northwestern locations in Argentina. J Am Oil Chem Soc 72: 1079–1081. https://doi.org/10.1007/BF02660727. [Google Scholar]
- Ayerza R. 2010. Effects of seed color and growing locations on fatty acid content and composition of two chia (Salvia hispanica L.) genotypes. J Am Oil Chem Soc 87: 1161–1165. https://doi.org/10.1007/s11746-010-1597-7. [Google Scholar]
- Ayerza R, Coates W. 2004. Composition of chia (Salvia hispanica L.) grown in six tropical and subtropical ecosystems of South America. Trop Sci 44: 131–135. https://doi.org/https://doi.org/10.1002/ts.154. [CrossRef] [Google Scholar]
- Bochicchio R, Rossi R, Labella R, Bitella G, Perniola M, Amato M. 2015. Effect of sowing density and nitrogen top-dress fertilisation on growth and yield of chia (Salvia hispanica L.) in a mediterranean environment: First results. Ital Agron 10: 163–166. https://doi.org/10.4081/ija.2015.640. [CrossRef] [Google Scholar]
- Câmara AKFI, Vidal VAS, Santos M, Bernardinelli OD, Sabadini E, Pollonio MAR. 2020. Reducing phosphate in emulsified meat products by adding chia (Salvia hispanica L.) mucilage in powder or gel format: A clean label technological strategy. Meat Sci 163: 108085. https://doi.org/10.1016/j.meatsci.2020.108085. [Google Scholar]
- Capitani MI, Spotorno V, Nolasco SM, Tomás MC. 2012. Physicochemical and functional characterization of by-products from chia (Salvia hispanica L.) seeds of Argentina. LWT – Food Sci Technol 45: 94–102. https://doi.org/10.1016/j.lwt.2011.07.012. [Google Scholar]
- Cassen A, Fabre JF, Lacroux E, et al. 2022. Aqueous integrated process for the recovery of oil bodies or fatty acid emulsions from sunflower seeds. Biomol 2022(12): 149. https://doi.org/10.3390/biom12020149. [Google Scholar]
- Chañi E, Pacheco S, Martínez G, et al. 2018. Long-term dietary intake of chia seed is associated with increased bone mineral content and improved hepatic and intestinal morphology in sprague-dawley rats. Nutrients 10: 922. https://doi.org/10.3390/nu10070922. [Google Scholar]
- Coelho M, Salas-Mellado M. 2014. Chemical characterization of chia (Salvia hispanica L.) for use in food products. J Food Nutr Res 2: 263–269. https://doi.org/10.12691/jfnr-2-5-9. [CrossRef] [Google Scholar]
- Dąbrowski G, Konopka I, Czaplicki S, Tańska M. 2017. Composition and oxidative stability of oil from Salvia hispanica L. seeds in relation to extraction method. Eur J Lipid Sci Technol 119: 1600209. https://doi.org/10.1002/ejlt.201600209. [CrossRef] [Google Scholar]
- Da Silva BP, Toledo RCL, Mishima MDV, et al. 2019. Effects of chia (Salvia hispanica L.) on oxidative stress and inflammation in ovariectomized adult female Wistar rats. Food Funct 10: 4036–4045. https://doi.org/10.1039/C9FO00862D. [CrossRef] [PubMed] [Google Scholar]
- EC. 2009. Commision decision of 13rd October 2009 authorising the placing on the market of Chia seed (Salvia hispanica L.) as novel food ingredient under Regulation (EC) No 258/97 of the European Parliament and of the Council. Off J Eur Union L 294/14: 14–15. [Google Scholar]
- EC. 2013. Commision Implementing decision of 22th January 2013 authorising an extension of use of Chia (Salvia hispanica L.) seed as a novel food ingredient under Regulation (EC) No 258/97 of the European Parliament and of the Council. Off J Eur Union L 21/34: 34–35. [Google Scholar]
- Enes BN, Moreira LPD, Silva BP, et al. 2020. Chia seed (Salvia hispanica L.) effects and their molecular mechanisms on unbalanced diet experimental studies: A systematic review. Food Sci 85: 226–239. https://doi.org/10.1111/1750-3841.15003. [CrossRef] [PubMed] [Google Scholar]
- Fabre JF, Lacroux E, Valentin R, Mouloungui R. 2015. Ultrasonication as a highly efficient method of flaxseed mucilage extraction. Ind Crops Prod 65: 354–360. https://doi.org/10.1016/j.indcrop.2014.11.015. [CrossRef] [Google Scholar]
- Fabre JF, Lacroux E, Gravé G, Mouloungui R. 2020. Extraction of camelina mucilage with ultrasound and high flow rate fluid circulation. Ind Crops Prod 144: 112057. https://doi.org/10.1016/j.indcrop.2019.112057. [CrossRef] [Google Scholar]
- Ferreira MdR, Oliva ME, Aiassa V, D’Alessandro ME. 2020. Salvia hispanica L. (chia) seed improves skeletal muscle lipotoxicity and insulin sensitivity in rats fed a sucrose-rich diet by modulating intramuscular lipid metabolism. J Funct Foods 66: 103775. https://doi.org/10.1016/j.jff.2019.103775. [Google Scholar]
- Gosukonda V. 2020. Comparative analysis of nitrogen-to-protein conversion factors for determining net protein content in six superfoods. J Microbiol Biotechnol Food Sci 9: 856–860. https://doi.org/10.15414/jmbfs.2020.9.4.856-860. [CrossRef] [Google Scholar]
- Gouzy A, Paulhe-Massol A, Mouloungui Z, Merah O. 2016. Effects of technical management on the fatty-acid composition of high-oleic and high-linoleic sunflower cultivars. OCL 23: D502. https://doi.org/10.1051/ocl/2016039. [CrossRef] [EDP Sciences] [Google Scholar]
- Grancieri M, Martino HSD, de Mejia EG. 2019. Chia seed (Salvia hispanica L.) as a source of proteins and bioactive peptides with health benefits: A review. Comp Rev Food Sci Food Saf 18: 480–499. https://doi.org/10.1111/1541-4337.12423. [CrossRef] [Google Scholar]
- Gravé G, Mouloungui Z, Poujaud F, et al. 2019. Accumulation during fruit development of components of interest in seed of Chia (Salvia hispanica L.) cultivar Oruro© released in France. OCL 26: 50. https://doi.org/10.1051/ocl/2019037. [Google Scholar]
- Grimes SJ, Phillips TD, Capezzone F, Graeff-Hönninger S. 2019. Impact of row spacing, sowing density and nitrogen fertilization on yield and quality traits of chia (Salvia hispanica L.) cultivated in southwestern Germany. Agronomy 9: 136. https://doi.org/10.3390/agronomy9030136. [CrossRef] [Google Scholar]
- ISO 749. 1977. Oilseed residues – Determination of total ash. Geneva, Switzerland: International Organization for Standardization. Available from https://www.iso.org/cms/render/live/fr/sites/isoorg/contents/data/standard/00/50/5005.html. (Accessed on Nov 20, 2020). [Google Scholar]
- ISO 5983-1. 2005. Animal feeding stuffs – Determination of nitrogen content and calculation of crude protein content – Part 1: Kjeldahl method. Switzerland: International Organization for Standardization. Available from https://www.iso.org/cms/render/live/fr/sites/isoorg/contents/data/standard/03/91/39145.html. (Accessed on Nov 20, 2020). [Google Scholar]
- Karkanis AC, Kontopoulou CK, Lykas C, Kakabouki I, Petropoulos SA, Bilalis D. 2018. Efficacy and selectivity of pre- and post-emergence herbicides in chia (Salvia hispanica L.) under Mediterranean semi-arid conditions. Not Bot Horti Agrobot Cluj-Napoca 46: 183–189. https://doi.org/10.15835/nbha46110979. [CrossRef] [Google Scholar]
- Knez-Hrnčič M, Ivanovski M, Cör D, Knez Ž. 2019. Chia seeds (Salvia hispanica L.): An overview − Phytochemical profile, isolation methods, and application. Molecules 25: 11. https://doi.org/10.3390/molecules25010011. [Google Scholar]
- Kulczyński B, Kobus-Cisowska J, Taczanowski M, Kmiecik D, Gramza-Michałowska A. 2019. The chemical composition and nutritional value of chia seeds – Current state of knowledge. Nutrients 11: 1242. https://doi.org/10.3390/nu11061242. [Google Scholar]
- Labdelli A, Zemour K, Simon V, Cerny M, Adda A, Merah O. 2019. Pistacia atlantica Desf. A new source of healthy vegetable oil. Appl Sci 9(12): 2552. https://doi.org/10.3390/app9122552. [CrossRef] [Google Scholar]
- Mas A, Brigante F, Salvucci E, et al. 2020. Defatted chia flour as functional ingredient in sweet cookies. How do processing, simulated gastrointestinal digestion and colonic fermentation affect its antioxidant properties? Food Chem 316: 126279. https://doi.org/10.1016/j.foodchem.2020.126279. [Google Scholar]
- Merah O, Mouloungui Z. 2019. Tetraploid wheats: valuable source of phytosterols and phytostanols. Agronomy 9: 201. https://doi.org/10.3390/agronomy9040201. [CrossRef] [Google Scholar]
- Merah O, Langlade N, Alignan M, et al. 2012. Genetic analysis of phytosterol content in sunflower seeds. Theor Appl Genet 125: 1589–1601. https://doi.org/10.1007/s00122-012-1937-0. [CrossRef] [PubMed] [Google Scholar]
- Merah O, Sayed-Ahmad B, Talou T, et al. 2020. Biochemical composition of cumin seeds, and biorefining study. Biomol 10: 1054. https://doi.org/10.3390/biom10071054. [Google Scholar]
- Mosse J. 1990. Nitrogen-to-protein conversion factor for ten cereals and six legumes or oilseeds. A reappraisal of its definition and determination. Variation according to species and to seed protein content. J Agric Food Chem 38: 18–24. https://doi.org/10.1021/jf00091a004. [CrossRef] [Google Scholar]
- Muñoz-González I, Merino-Álvarez E, Salvador M, et al. 2019. Chia (Salvia hispanica L.) a promising alternative for conventional and gelled emulsions: technological and lipid structural characteristics. Gels 5. https://doi.org/10.3390/gels5020019. [Google Scholar]
- Nguyen QH, Talou T, Evon P, Cerny M, Merah O. 2020. Fatty acid composition and oil content during coriander fruit development. Food Chem 326: 127034. https://doi.org/10.1016/j.foodchem.2020.127034. [CrossRef] [PubMed] [Google Scholar]
- Roche J, Alignan M, Bouniols A, Cerny M, Mouloungui Z, Merah O. 2010a. Sterol concentration and distribution in sunflower seeds (Helianthus annuus L.) during seed development. Food Chem 119: 1451–1456. https://doi.org/10.1016/j.foodchem.2009.09.026. [Google Scholar]
- Roche J, Alignan M, Bouniols A, Cerny M, Vear F, Mouloungui Z, Merah O. 2010b. Sterol content in sunflower seeds (Helianthus annuus L.) as affected by genotypes and environmental conditions. Food Chem 121: 990–995. https://doi.org/10.1016/j.foodchem.2010.01.036. [CrossRef] [Google Scholar]
- Roche J, Mouloungui Z, Cerny M, Merah O. 2016. Fatty acid and phytosterol accumulation during seed development in three oilseed species. Int J Food Sci 51: 1820–1826. https://doi.org/10.1111/ijfs.13153. [CrossRef] [Google Scholar]
- Roche J, Mouloungui Z, Cerny M, Merah O. 2019. Effect of sowing dates on fatty acids and phytosterols patterns of Carthamus tinctorius L. Appl Sci 9: 2839. https://doi.org/10.3390/app9142839. [CrossRef] [Google Scholar]
- Sandoval-Oliveros MR, Paredes-López O. 2013. Isolation and characterization of proteins from chia seeds (Salvia hispanica L.). J Agric Food Chem 61: 193–201. https://doi.org/10.1021/jf3034978. [CrossRef] [PubMed] [Google Scholar]
- Valenzuela R, Bascuñán KA, Chamorro R, et al. 2015. Modification of docosahexaenoic acid composition of milk from nursing women who received alpha linolenic acid from chia oil during gestation and nursing. Nutrients 7: 6405–6424. https://doi.org/10.3390/nu7085289. [CrossRef] [PubMed] [Google Scholar]
- Zemour K, Adda A, Labdelli A, Dellal A, Cerny M, Merah O. 2021. Effects of genotype and climatic conditions on the oil content and its fatty acids composition of Carthamus tinctorius L. Agronomy 11: 2048. https://doi.org/10.3390/agronomy11102048. [CrossRef] [Google Scholar]
- Zettel V, Hitzmann B. 2018. Applications of chia (Salvia hispanica L.) in food products. Trends Food Sci Technol 80: 43–50. https://doi.org/10.1016/j.tifs.2018.07.011. [CrossRef] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.