Open Access
Review
Numéro |
OCL
Volume 29, 2022
Minor oils from atypical plant sources / Huiles mineures de sources végétales atypiques
|
|
---|---|---|
Numéro d'article | 34 | |
Nombre de pages | 15 | |
DOI | https://doi.org/10.1051/ocl/2022027 | |
Publié en ligne | 13 octobre 2022 |
- Agostoni C, Berni Canani R, Fairweather-Tait S, et al. 2016. Scientific opinion on the safety of “coriander seed oil” as a novel food ingredient. EFSA J . https://doi.org/10.2903/j.efsa.2013.342. [Google Scholar]
- Aitzetmüller K, Matthäus B, Friedrich H. 2003. A new database for seed oil fatty acids – The database SOFA. Eur J Lipid Sci Technol 105: 92–103. [CrossRef] [Google Scholar]
- Arondel V, Lemieux B, Hwang I, et al. 1992. Map-based cloning of a gene controlling omega-3 fatty acid desaturation in Arabidopsis. Science 258(5086): 1353–5. https://doi.org/10.1126/science.1455229. [CrossRef] [PubMed] [Google Scholar]
- Ayme L, Arragain S, Canonge M, et al. 2018. Arabidopsis thaliana DGAT3 is a [2Fe-2S] protein involved in TAG biosynthesis. Sci Rep 8(1): 17254. https://doi.org/10.1038/s41598-018-35545-7. [CrossRef] [PubMed] [Google Scholar]
- Banerji R, Chowdhury AR, Misra G, Nigam SK. 1984. Butter from plants. Fette Seifen Anstrichmittel 86: 279–284. https://doi.org/10.1002/lipi.19840860706. [CrossRef] [Google Scholar]
- Barret P, Delourme R, Renard M, et al. 1998. A rapeseed FAE1 gene is linked to the E1 locus associated with variation in the content of erucic acid. Theor Appl Genet 96(2): 177–186. https://doi.org/10.1007/s001220050725. [CrossRef] [Google Scholar]
- Bates PD. 2016. Understanding the control of acyl flux through the lipid metabolic network of plant oil biosynthesis. Biochim Biophys Acta 1861(9PtB): 1214–1225. https://doi.org/10.1016/j.bbalip.2016.03.021. [CrossRef] [PubMed] [Google Scholar]
- Bates PD, Johnson SR, Cao X, et al. 2014. Fatty acid synthesis is inhibited by inefficient utilization of unusual fatty acids for glycerolipid assembly. Proc Natl Acad Sci USA 111(3): 1204–9. https://doi.org/10.1073/pnas.1318511111. [CrossRef] [PubMed] [Google Scholar]
- Baud S. 2018. Seeds as oil factories. Plant Reprod 31(3): 213–235. https://doi.org/10.1007/s00497-018-0325-6. [CrossRef] [PubMed] [Google Scholar]
- Baud S, Lepiniec L. 2010. Physiological and developmental regulation of seed oil production. Prog Lipid Res 49(3): 235–49. https://doi.org/10.1016/j.plipres.2010.01.001. [CrossRef] [PubMed] [Google Scholar]
- Baud S, Mendoza MS, To A, et al. 2007. WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis. Plant J 50(5): 825–38. https://doi.org/10.1111/j.1365-313X.2007.03092.x. [CrossRef] [PubMed] [Google Scholar]
- Baye T, Becker HC, Von Witzke-Ehbrecht S. 2005. Vernonia galamensis, a natural source of epoxy oil: Variation in fatty acid composition of seed and leaf lipids. Ind Crops Prod 21(2): 257–261. https://doi.org/10.1016/j.indcrop.2004.04.003. [CrossRef] [Google Scholar]
- Bhandari S, Bates PD. 2021. Triacylglycerol remodeling in Physaria fendleri indicates oil accumulation is dynamic and not a metabolic endpoint. Plant Physiol 187(2): 799–815. https://doi.org/10.1093/plphys/kiab294. [CrossRef] [PubMed] [Google Scholar]
- Bhattacharya S, Sinha S, Das N, Maiti MK. 2015. Increasing the stearate content in seed oil of Brassica juncea by heterologous expression of MlFatB affects lipid content and germination frequency of transgenic seeds. Plant Physiol Biochem 96: 345–55. https://doi.org/10.1016/j.plaphy.2015.08.015. [CrossRef] [PubMed] [Google Scholar]
- Brookes G, Bargfoot P. 2020. GM crop technology use 1996–2018: Farm income and production impacts. GM Crops & Food 11(4): 142–261. https://doi.org/10.1080/21645698.2020.1779574. [Google Scholar]
- Cahoon EB, Li-Beisson Y. 2020. Plant unusual fatty acids: Learning from the less common. Curr Opin Plant Biol 55: 66–73. https://doi.org/10.1016/j.pbi.2020.03.007. [CrossRef] [PubMed] [Google Scholar]
- Cahoon EB, Ripp KG, Hall SE, McGonigle B. 2002. Transgenic production of epoxy fatty acids by expression of a cytochrome P450 enzyme from Euphorbia lagascae seed. Plant Physiol 128(2): 615–24. https://doi.org/10.1104/pp.010768. [CrossRef] [PubMed] [Google Scholar]
- Cao YZ, Oo KC, Huang AH. 1990. Lysophosphatidate acyltransferase in the microsomes from maturing seeds of Meadowfoam (Limnanthes alba). Plant Physiol 94(3): 1199–206. https://doi.org/10.1104/pp.94.3.1199. [CrossRef] [PubMed] [Google Scholar]
- Chhikara S, Abdullah HM, Akbari P, Schnell D, Dhankher OP. 2018. Engineering Camelina sativa (L.) Crantz for enhanced oil and seed yields by combining diacylglycerol acyltransferase1 and glycerol-3-phosphate dehydrogenase expression. Plant Biotechnol J 16(5): 1034–1045. https://doi.org/10.1111/pbi.12847. [CrossRef] [PubMed] [Google Scholar]
- Chi X, Hu R, Zhang X, et al. 2014. Cloning and functional analysis of three diacylglycerol acyltransferase genes from peanut (Arachis hypogaea L.). PLoS One 9(9): e105834. https://doi.org/10.1371/journal.pone.0105834. [CrossRef] [PubMed] [Google Scholar]
- Dave RG, Patel RM, Patel RJ. 1985. Characteristics and composition of seeds and oil of wild variety of Momardica chrantiu L. from Gujarat, India. Fette Seifen Anstrichmittel 8: 326–327. [CrossRef] [Google Scholar]
- Dumeignil F. 2012. Propriétés et utilisation de l’huile de ricin. OCL 19(1): 10–15. https://doi.org/10.1051/ocl.2012.0427. [CrossRef] [EDP Sciences] [Google Scholar]
- Durrett TP, McClosky DD, Tumaney AW, et al. 2010. A distinct DGAT with sn-3 acetyltransferase activity that synthesizes unusual, reduced-viscosity oils in Euonymus and transgenic seeds. Proc Natl Acad Sci USA 107(20): 9464–9. https://doi.org/10.1073/pnas.1001707107. [CrossRef] [PubMed] [Google Scholar]
- Dussert S, Guerin C, Andersson M, et al. 2013. Comparative transcriptome analysis of three oil palm fruit and seed tissues that differ in oil content and fatty acid composition. Plant Physiol 162(3): 1337–58. https://doi.org/10.1104/pp.113.220525. [CrossRef] [PubMed] [Google Scholar]
- Dyer JM, Chapital DC, Kuan JC, et al. 2002. Molecular analysis of a bifunctional fatty acid conjugase/desaturase from tung. Implications for the evolution of plant fatty acid diversity. Plant Physiol 130(4): 2027–38. https://doi.org/10.1104/pp.102.010835. [CrossRef] [PubMed] [Google Scholar]
- Earle FR. 1966. Optically active aceto-triglyceride of Euonymous verrucosus . J Am Oil Chem Soc 36: A102. [Google Scholar]
- Focks N, Benning C. 1998. WRINKLED1: A novel, low-seed-oil mutant of Arabidopsis with a deficiency in the seed-specific regulation of carbohydrate metabolism. Plant Physiol 118(1): 91–101. [CrossRef] [PubMed] [Google Scholar]
- Gan L, Park K, Chai J, et al. 2022. Divergent evolution of extreme production of variant plant monounsaturated fatty acids. Proc Natl Acad Sci USA 119(30): e2201160119. https://doi.org/10.1073/pnas.2201160119. [CrossRef] [PubMed] [Google Scholar]
- Gao H, Gao Y, Zhang F, et al. 2021. Functional characterization of an novel acyl-CoA:diacylglycerol acyltransferase 3-3 (CsDGAT3-3) gene from Camelina sativa . Plant Sci 303: 110752. https://doi.org/10.1016/j.plantsci.2020.110752. [CrossRef] [PubMed] [Google Scholar]
- Graham SA, Kleiman R. 1992. Composition of seed oils in some Latin American Cuphea (Lythraceae). Ind Crops Prod 1: 31–34. https://doi.org/10.1016/0926-6690(92)90042-T. [CrossRef] [Google Scholar]
- Grzelak-Blaszczyk K, Karlinska E, Grzeda K, Roj E, Kolodziejczyk K. 2017. Defatted strawberry seeds as a source of phenolics, dietary fiber and minerals. Lwt-Food Sci Technol 84: 18–22. https://doi.org/10.1016/j.lwt.2017.05.014. [CrossRef] [Google Scholar]
- Gunstone FD, Harwood JL, Padley FB. 1986. The Lipid Handbook. CRC Press. [CrossRef] [Google Scholar]
- Han L, Usher S, Sandgrind S, et al. 2020. High level accumulation of EPA and DHA in field-grown transgenic Camelina – A multi-territory evaluation of TAG accumulation and heterogeneity. Plant Biotechnol J 18(11): 2280–2291. https://doi.org/10.1111/pbi.13385. [CrossRef] [PubMed] [Google Scholar]
- Harlow RD, Litchfield C, Fu H-C, Reiser R. 1965. The triglyceride composition of Myrica carolinensis fruit coat fat (bayberry tallow). J Am Oil Chem Soc 42(9): 747–750. https://doi.org/10.1007/BF02631853. [CrossRef] [Google Scholar]
- Haslam TM, Kunst L. 2013. Extending the story of very-long-chain fatty acid elongation. Plant Sci 210: 93–107. https://doi.org/10.1016/j.plantsci.2013.05.008. [CrossRef] [PubMed] [Google Scholar]
- Hatanaka T, Shimizu R, Hildebrand D. 2004. Expression of a Stokesia laevis epoxygenase gene. Phytochemistry 65(15): 2189–96. https://doi.org/10.1016/j.phytochem.2004.06.006. [CrossRef] [PubMed] [Google Scholar]
- Hayes DG, Kleiman R, Phillips BS. 1995. The triglyceride composition, structure, and presence of estolides in the oils of lesquerella and related species. JAOCS 72: 559–569. [CrossRef] [Google Scholar]
- Hennessy AA, Ross PR, Fitzgerald GF, Stanton C. 2016. Sources and bioactive properties of conjugated dietary fatty acids. Lipids 51(4): 377–97. https://doi.org/10.1007/s11745-016-4135-z. [CrossRef] [PubMed] [Google Scholar]
- Huang AHC. 2018. Plant lipid droplets and their associated proteins: Potential for rapid advances. Plant Physiol 176(3): 1894–1918. https://doi.org/10.1104/pp.17.01677. [CrossRef] [PubMed] [Google Scholar]
- Iskandarov U, Silva JE, Kim HJ, et al. 2017. A specialized diacylglycerol acyltransferase contributes to the extreme medium-chain fatty acid content of cuphea seed oil. Plant Physiol 174(1): 97–109. https://doi.org/10.1104/pp.16.01894. [CrossRef] [PubMed] [Google Scholar]
- Jiang WZ, Henry IM, Lynagh PG, et al. 2017. Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing. Plant Biotechnol J 15: 648–657. [CrossRef] [PubMed] [Google Scholar]
- Jin Q, O’Keefe SF, Stewart AC, et al. 2021. Techno-economic analysis of a grape pomace biorefinery: Production of seed oil, polyphenols, and biochar. Food Bioprod Process 127: 139–151. https://doi.org/10.1016/j.fbp.2021.02.002. [CrossRef] [Google Scholar]
- Johansson A, Laakso P, Kallio P. 1997. Characterization of seed oils of wild, edible Finnish berries. Z Lebensm Unters Forsch 203: 300–307. [CrossRef] [Google Scholar]
- Jones A, Davies HM, Voelker TA. 1995. Palmitoyl-acyl carrier protein (ACP) thioesterase and the evolutionary origin of plant acyl-ACP thioesterases. Plant Cell 7(3): 359–71. https://doi.org/10.1105/tpc.7.3.359. [PubMed] [Google Scholar]
- Kazaz S, Barthole G, Domergue F, et al. 2020. Differential activation of partially redundant delta9 stearoyl-acp desaturase genes is critical for omega-9 monounsaturated fatty acid biosynthesis during seed development in arabidopsis. Plant Cell 32(11): 3613–3637. https://doi.org/10.1105/tpc.20.00554. [CrossRef] [PubMed] [Google Scholar]
- Kleiman R, Payne-Wahl KL. 1984. Fatty acid composition of seed oils of the meliaceae, including one genus rich in cis-vaccenic acid. JAOCS 61: 1836–1838. [CrossRef] [Google Scholar]
- Knutsen HK, Alexander J, Barregard L, et al. 2016. Erucic acid in feed and food. EFSA J . https://doi.org/10.2903/j.efsa.2016.4593. [Google Scholar]
- Knutzon DS, Thompson GA, Radke SE, et al. 1992. Modification of Brassica seed oil by antisense expression of a stearoyl-acyl carrier protein desaturase gene. Proc Natl Acad Sci USA 89(7): 2624–8. https://doi.org/10.1073/pnas.89.7.2624. [CrossRef] [PubMed] [Google Scholar]
- Kroon JT, Wei W, Simon WJ, Slabas AR. 2006. Identification and functional expression of a type 2 acyl-CoA:diacylglycerol acyltransferase (DGAT2) in developing castor bean seeds which has high homology to the major triglyceride biosynthetic enzyme of fungi and animals. Phytochemistry 67(23): 2541–9. https://doi.org/10.1016/j.phytochem.2006.09.020. [CrossRef] [PubMed] [Google Scholar]
- Labalette F, Land N, Wagner D, Roux-Duparque M, Saillet E. 2011. La filière lin oléagineux française : panorama et perspectives. OCL 18(3): 113–122. [CrossRef] [EDP Sciences] [Google Scholar]
- Leebens-Mack JH, Barker MS, Carpenter EJ, et al. 2019. One thousand plant transcriptomes and the phylogenomics of green plants. Nature 574(7780): 679. https://doi.org/10.1038/s41586-019-1693-2. [CrossRef] [PubMed] [Google Scholar]
- Li-Beisson Y, Shorrosh B, Beisson F, et al. 2010. Acyl-lipid metabolism. Arabidopsis Book 8: e0133. https://doi.org/10.1199/tab.0133. [CrossRef] [PubMed] [Google Scholar]
- Li-Beisson Y, Shorrosh B, Beisson F, et al. 2013. Acyl-lipid metabolism. Arabidopsis Book 11: e0161. https://doi.org/10.1199/tab.0161. [CrossRef] [PubMed] [Google Scholar]
- Li R, Yu K, Hatanaka T, Hildebrand DF. 2010. Vernonia DGATs increase accumulation of epoxy fatty acids in oil. Plant Biotech J 8: 184–195. [CrossRef] [Google Scholar]
- Li X, van Loo EN, Gruber J, et al. 2012. Development of ultra-high erucic acid oil in the industrial oil crop Crambe abyssinica. Plant Biotechnol J 10(7): 862–70. https://doi.org/10.1111/j.1467-7652.2012.00709.x. [CrossRef] [PubMed] [Google Scholar]
- Li Q, Shao J, Tang S, et al. 2015. WRINKLED1 accelerates flowering and regulates lipid homeostasis between oil accumulation and membrane lipid anabolism in Brassica napus . Front Plant Sci 6: 1015. https://doi.org/10.3389/fpls.2015.01015. [PubMed] [Google Scholar]
- Li X, Teitgen AM, Shirani A, et al. 2018. Discontinuous fatty acid elongation yields hydroxylated seed oil with improved function. Nat Plants 4(9): 711–720. https://doi.org/10.1038/s41477-018-0225-7. [CrossRef] [PubMed] [Google Scholar]
- Lindqvist Y, Huang W, Schneider G, Shanklin J. 1996. Crystal structure of delta9 stearoyl-acyl carrier protein desaturase from castor seed and its relationship to other di-iron proteins. EMBO J 15(16): 4081–92. [CrossRef] [PubMed] [Google Scholar]
- Liu J, Rice A, McGlew K, et al. 2015a. Metabolic engineering of oilseed crops to produce high levels of novel acetyl glyceride oils with reduced viscosity, freezing point and calorific value. Plant Biotechnol J 13(6): 858–65. https://doi.org/10.1111/pbi.12325. [CrossRef] [PubMed] [Google Scholar]
- Liu J, Tjellstroem H, McGlew K, et al. 2015b. Field production, purification and analysis of high-oleic acetyl-triacylglycerols from transgenic Camelina sativa . Ind Crops Prod 65: 259–268. https://doi.org/10.1016/j.indcrop.2014.11.019. [CrossRef] [Google Scholar]
- Macho GA. 2014. Baboon feeding ecology informs the dietary niche of Paranthropus boisei. PLoS One 9(1): e84942. https://doi.org/10.1371/journal.pone.0084942. [CrossRef] [PubMed] [Google Scholar]
- Maeo K, Tokuda T, Ayame A, et al. 2009. An AP2-type transcription factor, WRINKLED1, of Arabidopsis thaliana binds to the AW-box sequence conserved among proximal upstream regions of genes involved in fatty acid synthesis. Plant J 60(3): 476–87. https://doi.org/10.1111/j.1365-313X2009.03967.x. [CrossRef] [PubMed] [Google Scholar]
- Maisonneuve S, Bessoule JJ, Lessire R, Delseny M, Roscoe TJ. 2010. Expression of rapeseed microsomal lysophosphatidic acid acyltransferase isozymes enhances seed oil content in Arabidopsis. Plant Physiol 152(2): 670–84. https://doi.org/10.1104/pp.109.148247. [CrossRef] [PubMed] [Google Scholar]
- McFie PJ, Stone SL, Banman SL, Stone SJ. 2010. Topological orientation of acyl-CoA:diacylglycerol acyltransferase-1 (DGAT1) and identification of a putative active site histidine and the role of the n terminus in dimer/tetramer formation. J Biol Chem 285(48): 37377–87. https://doi.org/10.1074/jbc.M110.163691. [CrossRef] [PubMed] [Google Scholar]
- Metzger JO. 2009. Fats and oils as renewable feedstock for chemistry. Eur J Lipid Sci Technol 111: 865–876. https://doi.org/10.1002/ejlt.200900130. [CrossRef] [Google Scholar]
- Miklaszewska M, Zienkiewicz K, Inchana P, Zienkiewicz A. 2021. Lipid metabolism and accumulation in oilseed crops. OCL 28. https://doi.org/10.1051/ocl/2021039. [Google Scholar]
- Morineau C, Bellec Y, Tellier F, et al. 2017. Selective gene dosage by CRISPR-Cas9 genome editing in hexaploid Camelina sativa . Plant Biotechnol J 15(6): 729–739. https://doi.org/10.1111/pbi.12671. [CrossRef] [PubMed] [Google Scholar]
- Napier JA, Haslam RP, Tsalavouta M, Sayanova O. 2019. The challenges of delivering genetically modified crops with nutritional enhancement traits. Nat Plants 5(6): 563–567. https://doi.org/10.1038/s41477-019-0430-z. [CrossRef] [PubMed] [Google Scholar]
- Nguyen HT, Mishra G, Whittle E, et al. 2010. Metabolic engineering of seeds can achieve levels of omega-7 fatty acids comparable with the highest levels found in natural plant sources. Plant Physiol 154(4): 1897–904. https://doi.org/10.1104/pp.110.165340. [CrossRef] [PubMed] [Google Scholar]
- Ohlrogge J, Thrower N, Mhaske V, et al. 2018. PlantFAdb: a resource for exploring hundreds of plant fatty acid structures synthesized by thousands of plants and their phylogenetic relationships. Plant J 96(6): 1299–1308. https://doi.org/10.1111/tpj.14102. [CrossRef] [PubMed] [Google Scholar]
- Ortiz R, Geleta M, Gustafsson C, et al. 2020. Oil crops for the future. Curr Opin Plant Biol 56: 181–189. https://doi.org/10.1016/j.pbi.2019.12.003. [CrossRef] [PubMed] [Google Scholar]
- Perry HJ, Harwood JL. 1993. Changes in the lipid-content of developing seeds of Brassica napus . Phytochemistry 32(6): 1411–1415. https://doi.org/10.1016/0031-9422(93)85148-k. [CrossRef] [Google Scholar]
- Purdy RH. 1986. High oleic sunflower – Physical and chemical characteristics. J Am Oil Chem Soc 63(8): 1062–1066. https://doi.org/10.1007/bf02673799. [CrossRef] [Google Scholar]
- Rodriguez-Rodriguez MF, Moreno-Perez AJ, Makni S, et al. 2021. Lipid profiling and oil properties of Camelina sativa seeds engineered to enhance the production of saturated and omega-7 fatty acids. Ind Crops Prod 170. https://doi.org/10.1016/j.indcrop.2021.113765. [CrossRef] [Google Scholar]
- Romsdahl T, Shirani A, Minto RE, et al. 2019. Nature-guided synthesis of advanced bio-lubricants. Sci Rep 9. https://doi.org/10.1038/s41598-019-48165-6. [CrossRef] [PubMed] [Google Scholar]
- Routaboul JM, Benning C, Bechtold N, Caboche M, Lepiniec L. 1999. The TAG1 locus of Arabidopsis encodes for a diacylglycerol acyltransferase. Plant Physiol Biochem 37(11): 831–840. doi:S0981-9428(99)00115-1. [CrossRef] [PubMed] [Google Scholar]
- Saha S, Enugutti B, Rajakumari S, Rajasekharan R. 2006. Cytosolic triacylglycerol biosynthetic pathway in oilseeds. molecular cloning and expression of peanut cytosolic diacylglycerol acyltransferase. Plant Physiol 141(4): 1533–1543. https://doi.org/10.1104/pp.106.082198. [CrossRef] [PubMed] [Google Scholar]
- Salas JJ, Bootello MA, Martinez-Force E, Venegas Caleron M, Garces R. 2021. High stearic sunflower oil: Latest advances and applications. OCL 28. https://doi.org/10.1051/ocl/2021022. [Google Scholar]
- Samarappuli D, Zanetti F, Berzuini S, Berti MT. 2020. Crambe (Crambe abyssinica Hochst): A non-food oilseed crop with great potential: A review. Agronomy-Basel 10(9). https://doi.org/10.3390/agronomy10091380. [Google Scholar]
- Shi JL, Cao YP, Fan XR, et al. 2012. A rice microsomal delta-12 fatty acid desaturase can enhance resistance to cold stress in yeast and Oryza sativa . Mol Breed 29(3): 743–757. https://doi.org/10.1007/s11032-011-9587-5. [CrossRef] [Google Scholar]
- Shockey J, Regmi A, Cotton K, et al. 2016. Identification of Arabidopsis GPAT9 (At5g60620) as an essential gene involved in triacylglycerol biosynthesis. Plant Physiol 170(1): 163–79. https://doi.org/10.1104/pp.15.01563. [CrossRef] [PubMed] [Google Scholar]
- Siloto RM, Findlay K, Lopez-Villalobos A, et al. 2006. The accumulation of oleosins determines the size of seed oilbodies in Arabidopsis. Plant Cell 18(8): 1961–74. https://doi.org/10.1105/tpc.106.041269. [CrossRef] [PubMed] [Google Scholar]
- Sonntag, ed. 1979. Composition and characteristics of individual fats and oils. In: Swern D, ed. Bailey’s industrial oil and fat products . New York: John Wiley & Sons. [Google Scholar]
- Stahl U, Stalberg K, Stymne S, Ronne H. 2008. A family of eukaryotic lysophospholipid acyltransferases with broad specificity. FEBS Lett 582(2): 305–9. https://doi.org/10.1016/j.febslet.2007.12.020. [CrossRef] [PubMed] [Google Scholar]
- Stone SJ, Levin MC, Farese RV Jr. 2006. Membrane topology and identification of key functional amino acid residues of murine acyl-CoA:diacylglycerol acyltransferase-2. J Biol Chem 281(52): 40273–82. https://doi.org/10.1074/jbc.M607986200. [CrossRef] [PubMed] [Google Scholar]
- Swarbrick CMD, Nanson JD, Patterson EI, Forwood JK. 2020. Structure, function, and regulation of thioesterases. Progr Lipid Res 79. https://doi.org/10.1016/j.plipres.2020.101036. [Google Scholar]
- Tarazona P, Feussner K, Feussner I. 2015. An enhanced plant lipidomics method based on multiplexed liquid chromatography-mass spectrometry reveals additional insights into cold- and drought-induced membrane remodeling. Plant J 84(3): 621–33. https://doi.org/10.1111/tpj.13013. [CrossRef] [PubMed] [Google Scholar]
- Ucciani E. 1994. Nouveau dictionnaire des huiles végétales : compositions en acides gras. Technique et Documentation. Paris : Lavoisier. [Google Scholar]
- van de Loo FJ, Broun P, Turner S, Somerville C. 1995. An oleate 12-hydroxylase from Ricinus communis L. is a fatty acyl desaturase homolog. Proc Natl Acad Sci USA 92(15): 6743–7. https://doi.org/10.1073/pnas.92.15.6743. [CrossRef] [PubMed] [Google Scholar]
- van der Vossen HAM, Mkamilo GS, Eds. 2007. PROTA 14 Oléagineux, ressources végétales de l’Afrique de l’ouest [Transl. by Chauvet JM and Siemonsma JS]. In: PROTA . Wageningen: Fondation PROTA, Backhuys Publishers. [Google Scholar]
- Vandeputte J. 2012. Les agro-tensio actifs. OCL 192(2): 133–137. [CrossRef] [EDP Sciences] [Google Scholar]
- Vanhercke T, El Tahchy A, Liu Q, et al. 2014. Metabolic engineering of biomass for high energy density: Oilseed-like triacylglycerol yields from plant leaves. Plant Biotechnol J 12(2): 231–9. https://doi.org/10.1111/pbi.12131. [CrossRef] [PubMed] [Google Scholar]
- Vega-Morales T, Mateos-Diaz C, Perez-Machin R, et al. 2019. Chemical composition of industrially and laboratory processed Cyperus esculentus rhizomes. Food Chem 297: 124896. https://doi.org/10.1016/j.foodchem.2019.05.170. [CrossRef] [PubMed] [Google Scholar]
- Vigeolas H, Waldeck P, Zank T, Geigenberger P. 2007. Increasing seed oil content in oil-seed rape (Brassica napus L.) by over-expression of a yeast glycerol-3-phosphate dehydrogenase under the control of a seed-specific promoter. Plant Biotechnol J 5(3): 431–441. https://doi.org/10.1111/j.1467-7652.2007.00252.x. [CrossRef] [PubMed] [Google Scholar]
- Vrinten P, Hu Z, Munchinsky MA, Rowland G, Qiu X. 2005. Two FAD3 desaturase genes control the level of linolenic acid in flax seed. Plant Physiol 139(1): 79–87. https://doi.org/10.1104/pp.105.064451. [CrossRef] [PubMed] [Google Scholar]
- Wang G, Lin Q, Xu Y. 2007. Tetraena mongolica Maxim can accumulate large amounts of triacylglycerol in phloem cells and xylem parenchyma of stems. Phytochemistry 68(15): 2112–2117. https://doi.org/10.1016/j.phytochem.2007.04.040. [CrossRef] [PubMed] [Google Scholar]
- Wang X, Yu C, Liu Y, et al. 2019. GmFAD3A, a omega-3 fatty acid desaturase gene, enhances cold tolerance and seed germination rate under low temperature in rice. Int J Mol Sci 20(15). https://doi.org/10.3390/ijms20153796. [PubMed] [Google Scholar]
- Wang L, Jing M, Wang Y, et al. 2020. Integrative analysis of lipidomics and transcriptomics revealed dynamic details of lipids metabolism and accumulation in developing tiger nut (Cyperus Esculentus) tubers. Res Square . https://doi.org/10.21203/rs.3.rs-115598/v1. [Google Scholar]
- Wiberg E, Banas A, Stymne S. 1997. Fatty acid distribution and lipid metabolism in developing seeds of laurate-producing rape (Brassica napus L.). Planta 203(3): 341–8. https://doi.org/10.1007/s004250050200. [CrossRef] [PubMed] [Google Scholar]
- Winnacker M, Rieger B. 2016. Biobased polyamides: Recent advances in basic and applied research. Macromol Rapid Commun 37(17): 1391–1413. https://doi.org/10.1002/marc.201600181. [CrossRef] [PubMed] [Google Scholar]
- Xu C, Shanklin J. 2016. Triacylglycerol metabolism, function, and accumulation in plant vegetative tissues. Annu Rev Plant Biol 67: 179–206. https://doi.org/10.1146/annurev-arplant-043015-111641. [CrossRef] [PubMed] [Google Scholar]
- Zanetti F, Monti A, Berti MT. 1993. Challenges and opportunities for new industrial oilseed crops in EU-27: A review. Ind Crops Prod 50: 580–595. https://doi.org/10.1016/j.indcrop.2013.08.030. [CrossRef] [Google Scholar]
- Zeng F, Roslinsky V, Cheng B. 2017. Mutations in the promoter, intron and CDS of two FAD2 generate multiple alleles modulating linoleic acid level in yellow mustard. Sci Rep 7(1): 8284. https://doi.org/10.1038/s41598-017-08317-y. [CrossRef] [PubMed] [Google Scholar]
- Zhai Z, Liu H, Shanklin J. 2021. Ectopic Expression of OLEOSIN 1 and inactivation of GBSS1 have a synergistic effect on oil accumulation in plant leaves. Plants (Basel) 10(3). https://doi.org/10.3390/plants10030513. [PubMed] [Google Scholar]
- Zhang M, Fan J, Taylor DC, Ohlrogge JB. 2009. DGAT1 and PDAT1 acyltransferases have overlapping functions in Arabidopsis triacylglycerol biosynthesis and are essential for normal pollen and seed development. Plant Cell 21(12): 3885–901. https://doi.org/10.1105/tpc.109.071795. [Google Scholar]
- Zhang L, Jia B, Tan X, et al. 2014. Biodiesel production from tung (Vernicia montana) oil and its blending properties in different fatty acid compositions. PLoS One 9(8): e105298. https://doi.org/10.1371/journal.pone.0105298. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.