Open Access
Review
Numéro |
OCL
Volume 28, 2021
Green and white biotechnologies in the fields of lipids and oil- and proteincrops / Biotechnologies vertes et blanches dans les domaines des lipides et oléoprotéagineux
|
|
---|---|---|
Numéro d'article | 51 | |
Nombre de pages | 19 | |
DOI | https://doi.org/10.1051/ocl/2021038 | |
Publié en ligne | 17 novembre 2021 |
- Abghari A, Chen S. 2014. Yarrowia lipolytica as an oleaginous cell factory platform for production of fatty acid-based biofuel and bioproducts. Front Energy Res 2: 1–21. https://doi.org/10.3389/fenrg.2014.00021. [CrossRef] [Google Scholar]
- Abghari A, Chen S. 2017. Engineering Yarrowia lipolytica for enhanced production of lipid and citric acid. Fermentation 3(3). https://doi.org/10.3390/fermentation3030034. [Google Scholar]
- Abghari A, Madzak C, Chen S. 2017. Combinatorial engineering of Yarrowia lipolytica as a promising cell biorefinery platform for the de novo production of multi-purpose long chain dicarboxylic acids. Fermentation 3(3). https://doi.org/10.3390/fermentation3030040. [Google Scholar]
- Ali N, Zhang Q, Liu ZY, Li FL, Lu M, Fang XC. 2020. Emerging technologies for the pretreatment of lignocellulosic materials for bio-based products. Appl Microbiol Biotechnol 104(2): 455–473. https://doi.org/10.1007/s00253-019-10158-w. [CrossRef] [PubMed] [Google Scholar]
- Amalia L, Zhang YH, Ju YH, Tsai SL. 2020. Enhanced lipid production in Yarrowia lipolytica Po1g by over-expressing lro1 gene under two different promoters. Appl Biochem Biotechnol 191(1): 104–111. https://doi.org/10.1007/s12010-020-03226-9. [CrossRef] [PubMed] [Google Scholar]
- Araujo GS, Matos LJBL, Fernandes JO, et al. 2013. Extraction of lipids from microalgae by ultrasound application: Prospection of the optimal extraction method. Ultrason Sonochem 20(1): 95–98. https://doi.org/10.1016/j.ultsonch.2012.07.027. [CrossRef] [PubMed] [Google Scholar]
- Athenstaedt K, Jolivet P, Boulard C, et al. 2006. Lipid particle composition of the yeast Yarrowia lipolytica depends on the carbon source. Proteomics 6(5): 1450–1459. https://doi.org/10.1002/pmic.200500339. [CrossRef] [PubMed] [Google Scholar]
- Ayadi I, Belghith H, Gargouri A, Guerfali M. 2018. Screening of new oleaginous yeasts for single cell oil production, hydrolytic potential exploitation and agro-industrial by-products valorization. In: Process Safety and Environmental Protection, Vol. 119. Institution of Chemical Engineers. https://doi.org/10.1016/j.psep.2018.07.012. [Google Scholar]
- Bellou S, Makri A, Triantaphyllidou IE, Papanikolaou S, Aggelis G. 2014. Morphological and metabolic shifts of Yarrowia lipolytica induced by alteration of the dissolved oxygen concentration in the growth environment. Microbiology (United Kingdom) 160(Part 4): 807–817. https://doi.org/10.1099/mic.0.074302-0. [Google Scholar]
- Bellou S, Triantaphyllidou IE, Mizerakis P, Aggelis G. 2016. High lipid accumulation in Yarrowia lipolytica cultivated under double limitation of nitrogen and magnesium. J Biotechnol 234: 116–126. https://doi.org/10.1016/j.jbiotec.2016.08.001. [CrossRef] [PubMed] [Google Scholar]
- Beopoulos A, Mrozova Z, Thevenieau F, et al. 2008. Control of lipid accumulation in the yeast Yarrowia lipolytica. Appl Environ Microbiol 74(24): 7779–7789. https://doi.org/10.1128/AEM01412-08. [CrossRef] [PubMed] [Google Scholar]
- Bhutada G, Kavšček M, Ledesma-Amaro R, et al. 2017. Sugar versus fat: Elimination of glycogen storage improves lipid accumulation in Yarrowia lipolytica. FEMS Yeast Res 17(3): 1–10. https://doi.org/10.1093/femsyr/fox020. [CrossRef] [Google Scholar]
- Blazeck J, Hill A, Liu L, et al. 2014. Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production. Nat Commun 5: 1–10. https://doi.org/10.1038/ncomms4131. [CrossRef] [Google Scholar]
- Bouras M, Chadni M, Barba FJ, Grimi N, Bals O, Vorobiev E. 2015. Optimization of microwave-assisted extraction of polyphenols from Quercus bark. Ind Crops Prod 77: 590–601. https://doi.org/10.1016/j.indcrop.2015.09.018. [CrossRef] [Google Scholar]
- Brabender M, Hussain MS, Rodriguez G, Blenner MA. 2018. Urea and urine are a viable and cost-effective nitrogen source for Yarrowia lipolytica biomass and lipid accumulation. Appl Microbiol Biotechnol 102(5): 2313–2322. https://doi.org/10.1007/s00253-018-8769-z. [CrossRef] [PubMed] [Google Scholar]
- Breil C, Abert Vian M, Zemb T, Kunz W, Chemat F. 2017. “Bligh and Dyer” and Folch methods for solid–liquid–liquid extraction of lipids from microorganisms. Comprehension of solvatation mechanisms and towards substitution with alternative solvents. Int J Mol Sci 18(4): 1–21. https://doi.org/10.3390/ijms18040708. [CrossRef] [Google Scholar]
- Carsanba E, Papanikolaou S, Erten H. 2018. Production of oils and fats by oleaginous microorganisms with an emphasis given to the potential of the nonconventional yeast Yarrowia lipolytica. Crit Rev Biotechnol 38(8): 1230–1243. https://doi.org/10.1080/07388551.2018.1472065. [CrossRef] [PubMed] [Google Scholar]
- Carsanba E, Papanikolaou S, Fickers P, Erten H. 2020. Lipids by Yarrowia lipolytica strains cultivated on glucose in batch cultures. Microorganisms 8(7): 1–14. https://doi.org/10.3390/microorganisms8071054. [CrossRef] [Google Scholar]
- Cheirsilp B, Louhasakul Y. 2013. Industrial wastes as a promising renewable source for production of microbial lipid and direct transesterification of the lipid into biodiesel. Bioresour Technol 142: 329–337. https://doi.org/10.1016/j.biortech.2013.05.012. [CrossRef] [PubMed] [Google Scholar]
- Chemat F, Rombaut N, Sicaire AG, Meullemiestre A, Fabiano-Tixier AS, Abert-Vian M. 2017. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason Sonochem 34: 540–560. https://doi.org/10.1016/j.ultsonch.2016.06.035. [CrossRef] [PubMed] [Google Scholar]
- Christophe G, Kumar V, Nouaille R, et al. 2012. Recent developments in microbial oils production: A possible alternative to vegetable oils for biodiesel without competition with human food? Braz Arch Biol Technol 55(1): 29–46. https://doi.org/10.1590/S1516-89132012000100004. [CrossRef] [Google Scholar]
- Chuck CJ, Lou-Hing D, Dean R, Sargeant LA, Scott RJ, Jenkins RW. 2014. Simultaneous microwave extraction and synthesis of fatty acid methyl ester from the oleaginous yeast Rhodotorula glutinis. Energy 69: 446–454. https://doi.org/10.1016/j.energy.2014.03.036. [CrossRef] [Google Scholar]
- Darvishi F, Fathi Z, Ariana M, Moradi H. 2017. Yarrowia lipolytica as a workhorse for biofuel production. Biochem Eng J 127: 87–96. https://doi.org/10.1016/j.bej.2017.08.013. [CrossRef] [Google Scholar]
- Datta A, Hossain A, Sanjay R. 2019. Asian J Chem 31(8): 1851–1858. [CrossRef] [Google Scholar]
- Deive FJ, Carvalho E, Pastrana L, Rúa ML, Longo MA, Sanroman MA. 2009. Strategies for improving extracellular lipolytic enzyme production by Thermus thermophilus HB27. Bioresour Technol 100(14): 3630–3637. https://doi.org/10.1016/j.biortech.2009.02.053. [CrossRef] [PubMed] [Google Scholar]
- Dobrowolski A, Mituła P, Rymowicz W, Mirończuk AM. 2016. Efficient conversion of crude glycerol from various industrial wastes into single cell oil by yeast Yarrowia lipolytica. Bioresour Technol 207: 237–243. https://doi.org/10.1016/j.biortech.2016.02.039. [CrossRef] [PubMed] [Google Scholar]
- Donot F, Fontana A, Baccou JC, Strub C, Schorr-Galindo S. 2014. Single cell oils (SCOs) from oleaginous yeasts and moulds: Production and genetics. Biomass Bioenergy 68(04): 135–150. https://doi.org/10.1016/j.biombioe.2014.06.016. [CrossRef] [Google Scholar]
- Drévillon L, Koubaa M, Vorobiev E. 2018. Lipid extraction from Yarrowia lipolytica biomass using high-pressure homogenization. Biomass Bioenergy 115: 143–150. https://doi.org/10.1016/j.biombioe.2018.04.014. [CrossRef] [Google Scholar]
- Drévillon L, Koubaa M, Nicaud JM, Vorobiev E. 2019. Cell disruption pre-treatments towards an effective recovery of oil from Yarrowia lipolytica oleaginous yeast. Biomass Bioenergy 128: 105320. https://doi.org/10.1016/j.biombioe.2019.105320. [Google Scholar]
- Dulermo T, Nicaud JM. 2011. Involvement of the G3P shuttle and Β-oxidation pathway in the control of TAG synthesis and lipid accumulation in Yarrowia lipolytica. Metab Eng 13(5): 482–491. https://doi.org/10.1016/j.ymben.2011.05.002. [CrossRef] [PubMed] [Google Scholar]
- Dulermo T, Tréton B, Beopoulos A, Gnankon APK, Haddouche R, Nicaud JM. 2013. Characterization of the two intracellular lipases of Y. lipolytica encoded by TGL3 and TGL4 genes: New insights into the role of intracellular lipases and lipid body organisation. Biochim Biophys Acta – Mol Cell Biol Lipids 1831(9): 1486–1495. https://doi.org/10.1016/j.bbalip.2013.07.001. [Google Scholar]
- Dulermo R, Gamboa-Meléndez H, Dulermo T, Thevenieau F, Nicaud JM. 2014. The fatty acid transport protein Fat1p is involved in the export of fatty acids from lipid bodies in Yarrowia lipolytica. FEMS Yeast Res 14(6): 883–896. https://doi.org/10.1111/1567-1364.12177. [CrossRef] [PubMed] [Google Scholar]
- Enamala MK, Enamala S, Chavali M, et al. 2018. Production of biofuels from microalgae – A review on cultivation, harvesting, lipid extraction, and numerous applications of microalgae. Renew Sustain Energy Rev 94: 49–68. https://doi.org/10.1016/j.rser.2018.05.012. [CrossRef] [Google Scholar]
- Fabiszewska AU, Zieniuk B, Kozłowska M, et al. 2021. Studies on upgradation of waste fish oil to lipid-rich yeast biomass in Yarrowia lipolytica batch cultures. Foods 10(2): 1–15. https://doi.org/10.3390/foods10020436. [CrossRef] [PubMed] [Google Scholar]
- Fickers P, Destain J, Thonart P. 2009. Improvement of Yarrowia lipolytica lipase production by fed-batch fermentation. J Basic Microbiol 49(2): 212–215. https://doi.org/10.1002/jobm.200800186. [CrossRef] [PubMed] [Google Scholar]
- Fontanille P, Kumar V, Christophe G, Nouaille R, Larroche C. 2012. Bioconversion of volatile fatty acids into lipids by the oleaginous yeast Yarrowia lipolytica. Bioresour Technol 114: 443–449. https://doi.org/10.1016/j.biortech.2012.02.091. [CrossRef] [PubMed] [Google Scholar]
- Friedlander J, Tsakraklides V, Kamineni A, et al. 2016. Engineering of a high lipid producing Yarrowia lipolytica strain. Biotechnol Biofuels 9(1): 1–12. https://doi.org/10.1186/s13068-016-0492-3. [CrossRef] [PubMed] [Google Scholar]
- Fukuda R. 2013. Metabolism of hydrophobic carbon sources and regulation of it in n-alkane-assimilating yeast Yarrowia lipolytica. Biosci Biotechnol Biochem 77(6): 1149–1154. https://doi.org/10.1271/bbb.130164. [CrossRef] [PubMed] [Google Scholar]
- Gálvez-López D, Chávez-Meléndez B, Vázquez-Ovando A, Rosas-Quijano R. 2019. The metabolism and genetic regulation of lipids in the oleaginous yeast Yarrowia lipolytica. Braz J Microbiol 50(1): 23–31. https://doi.org/10.1007/s42770-018-0004-7. [CrossRef] [PubMed] [Google Scholar]
- Gao R, Li Z, Zhou X, Cheng S, Zheng L. 2017. Oleaginous yeast Yarrowia lipolytica culture with synthetic and food waste-derived volatile fatty acids for lipid production. Biotechnol Biofuels 10(1): 1–15. https://doi.org/10.1186/s13068-017-0942-6. [CrossRef] [PubMed] [Google Scholar]
- Gao R, Li Z, Zhou X, Bao W, Cheng S, Zheng L. 2020. Enhanced lipid production by Yarrowia lipolytica cultured with synthetic and waste-derived high-content volatile fatty acids under alkaline conditions. Biotechnol Biofuels 13(1): 1–16. https://doi.org/10.1186/s13068-019-1645-y. [CrossRef] [PubMed] [Google Scholar]
- Ghogare R, Chen S, Xiong X. 2020. Metabolic engineering of oleaginous yeast Yarrowia lipolytica for overproduction of fatty acids. Front Microbiol 11. https://doi.org/10.3389/fmicb.2020.01717. [CrossRef] [PubMed] [Google Scholar]
- Gimpel JA, Henríquez V, Mayfield SP. 2015. In metabolic engineering of eukaryotic microalgae: Potential and challenges come with great diversity. Front Microbiol 6: 1–14. https://doi.org/10.3389/fmicb.2015.01376. [CrossRef] [PubMed] [Google Scholar]
- Grimsrud PA, Xie H, Griffin TJ, Bernlohr DA. 2008. Oxidative stress and covalent modification of protein with bioactive aldehydes. J Biol Chem 283(32): 21837–21841. https://doi.org/10.1074/jbc.R700019200. [CrossRef] [PubMed] [Google Scholar]
- Günerken E, D’Hondt E, Eppink MHM, Garcia-Gonzalez L, Elst K, Wijffels RH. 2015. Cell disruption for microalgae biorefineries. Biotechnol Adv 33(2): 243–260. https://doi.org/10.1016/j.biotechadv.2015.01.008. [CrossRef] [PubMed] [Google Scholar]
- Hapeta P, Rakicka M, Dulermo R, et al. 2017. Transforming sugars into fat–lipid biosynthesis using different sugars in Yarrowia lipolytica. Yeast 34(7): 293–304. https://doi.org/10.1002/yea.3232. [CrossRef] [PubMed] [Google Scholar]
- Harzevili FD. 2014. Biotechnological applications of the Yeast Yarrowia lipolytica. Springer International Publishing, pp. 1–16. https://doi.org/10.1007/978-3-319-06437-6. [Google Scholar]
- Imatoukene N, Koubaa M, Perdrix E, Benali M, Vorobiev E. 2020. Combination of cell disruption technologies for lipid recovery from dry and wet biomass of Yarrowia lipolytica and using green solvents. Process Biochem 90: 139–147. https://doi.org/10.1016/j.procbio.2019.11.011. [CrossRef] [Google Scholar]
- Jeevan Kumar SP, Banerjee R. 2019. Enhanced lipid extraction from oleaginous yeast biomass using ultrasound assisted extraction: A greener and scalable process. Ultrason Sonochem 52: 25–32. https://doi.org/10.1016/j.ultsonch.2018.08.003. [CrossRef] [PubMed] [Google Scholar]
- Karamerou EE, Webb C. 2019. Cultivation modes for microbial oil production using oleaginous yeasts – A review. Biochem Eng J 151: 107322. https://doi.org/10.1016/j.bej.2019.107322. [CrossRef] [Google Scholar]
- Kavšcek M, Bhutada G, Madl T, Natter K. 2015. Optimization of lipid production with a genome-scale model of Yarrowia lipolytica. BMC Syst Biol 9(1): 1–13. https://doi.org/10.1186/s12918-015-0217-4. [CrossRef] [PubMed] [Google Scholar]
- Khoomrung S, Chumnanpuen P, Jansa-Ard S, et al. 2013. Rapid quantification of yeast lipid using microwave-assisted total lipid extraction and HPLC-CAD. Anal Chem 85(10): 4912–4919. https://doi.org/10.1021/ac3032405. [CrossRef] [PubMed] [Google Scholar]
- Khot M, Raut G, Ghosh D, Alarcón-Vivero M, Contreras D, Ravikumar A. 2020. Lipid recovery from oleaginous yeasts: Perspectives and challenges for industrial applications. Fuel 259: 116292. https://doi.org/10.1016/j.fuel.2019.116292. [CrossRef] [Google Scholar]
- Kim M, Park BG, Kim EJ, Kim J, Kim BG. 2019. In silico identification of metabolic engineering strategies for improved lipid production in Yarrowia lipolytica by genome-scale metabolic modeling. Biotechnol Biofuels 12(1): 1–14. https://doi.org/10.1186/s13068-019-1518-4. [CrossRef] [PubMed] [Google Scholar]
- Koubaa M, Imatoukene N, Drévillon L, Vorobiev E. 2020. Current insights in yeast cell disruption technologies for oil recovery: A review. Chem Eng Process – Process Intensif 150: 107868. https://doi.org/10.1016/j.cep.2020.107868. [Google Scholar]
- Koutinas AA, Chatzifragkou A, Kopsahelis N, Papanikolaou S, Kookos IK. 2014. Design and techno-economic evaluation of microbial oil production as a renewable resource for biodiesel and oleochemical production. Fuel 116: 566–577. https://doi.org/10.1016/j.fuel.2013.08.045. [CrossRef] [Google Scholar]
- Krzyczkowska J, Kozłowska M. 2017. Effect of oils extracted from plant seeds on the growth and lipolytic activity of Yarrowia lipolytica yeast. JAOCS – J Am Oil Chem Soc 94(5): 661–671. https://doi.org/10.1007/s11746-017-2975-1. [CrossRef] [PubMed] [Google Scholar]
- Kumar LR, Yellapu SK, Tyagi RD, Drogui P. 2020. Purified crude glycerol by acid treatment allows to improve lipid productivity by Yarrowia lipolytica S KY7. Process Biochem 96: 165–173. https://doi.org/10.1016/j.procbio.2020.06.010. [CrossRef] [Google Scholar]
- Kuttiraja M, Dhouha A, Tyagi RD. 2018. Harnessing the Effect of pH on Lipid Production in Batch Cultures of Yarrowia lipolytica SKY7. Appl Biochem Biotechnol 184(4): 1332–1346. https://doi.org/10.1007/s12010-017-2617-y. [CrossRef] [PubMed] [Google Scholar]
- Lazar Z, Liu N, Stephanopoulos G. 2018. Holistic approaches in lipid production by Yarrowia lipolytica. Trends Biotechnol 36(11): 1157–1170. https://doi.org/10.1016/j.tibtech.2018.06.007. [CrossRef] [PubMed] [Google Scholar]
- Ledesma-Amaro R, Dulermo T, Nicaud JM. 2015. Engineering Yarrowia lipolytica to produce biodiesel from raw starch. Biotechnol Biofuels 8(1): 1–12. https://doi.org/10.1186/s13068-015-0335-7. [CrossRef] [PubMed] [Google Scholar]
- Ledesma-Amaro R, Dulermo R, Niehus X, Nicaud JM. 2016. Combining metabolic engineering and process optimization to improve production and secretion of fatty acids. Metab Eng 38: 38–46. https://doi.org/10.1016/j.ymben.2016.06.004. [CrossRef] [PubMed] [Google Scholar]
- Li Y, Horsman M, Wu N, Lan CQ, Dubois-Calero N. 2008. Biofuels from microalgae. Biotechnol Progress 24(4): 815–820. https://doi.org/10.1021/bp.070371k. [Google Scholar]
- Li Q, Bai Z, O’Donnell A, Harvey LM, Hoskisson PA, McNeil B. 2011. Oxidative stress in fungal fermentation processes: The roles of alternative respiration. Biotechnol Lett 33(3): 457–467. https://doi.org/10.1007/s10529-010-0471-x. [CrossRef] [PubMed] [Google Scholar]
- Liu L, Pan A, Spofford C, Zhou N, Alper HS. 2015a. An evolutionary metabolic engineering approach for enhancing lipogenesis in Yarrowia lipolytica. Metab Eng 29: 36–45. https://doi.org/10.1016/j.ymben.2015.02.003. [CrossRef] [PubMed] [Google Scholar]
- Liu L, Markham K, Blazeck J, et al. 2015b. Surveying the lipogenesis landscape in Yarrowia lipolytica through understanding the function of a Mga2p regulatory protein mutant. Metab Eng 31: 102–111. https://doi.org/10.1016/j.ymben.2015.07.004. [CrossRef] [PubMed] [Google Scholar]
- Lopes M, Gomes AS, Silva CM, Belo I. 2018. Microbial lipids and added value metabolites production by Yarrowia lipolytica from pork lard. J Biotechnol 265: 76–85. https://doi.org/10.1016/j.jbiotec.2017.11.007. [CrossRef] [PubMed] [Google Scholar]
- Lopes M, Miranda SM, Alves JM, Pereira AS, Belo I. 2019. Waste cooking oils as feedstock for lipase and lipid-rich biomass production. Eur J Lipid Sci Technol 121(1): 1–9. https://doi.org/10.1002/ejlt.201800188. [CrossRef] [Google Scholar]
- Louhasakul Y, Cheirsilp B, Intasit R, Maneerat S, Saimmai A. 2020. Enhanced valorization of industrial wastes for biodiesel feedstocks and biocatalyst by lipolytic oleaginous yeast and biosurfactant-producing bacteria. Int Biodeterior Biodegrad 148: 104911. https://doi.org/10.1016/j.ibiod.2020.104911. [CrossRef] [Google Scholar]
- Magdouli S, Guedri T, Tarek R, Brar SK, Blais JF. 2017. Valorization of raw glycerol and crustacean waste into value added products by Yarrowia lipolytica. Bioresour Technol 243: 57–68. https://doi.org/10.1016/j.biortech.2017.06.074. [CrossRef] [PubMed] [Google Scholar]
- Magdouli S, Brar SK, Blais JF. 2018. Morphology and rheological behaviour of Yarrowia lipolytica: Impact of dissolved oxygen level on cell growth and lipid composition. Process Biochem 65: 1–10. https://doi.org/10.1016/j.procbio.2017.10.021. [CrossRef] [Google Scholar]
- Martins FF, Ferreira TF, Azevedo DA, Coelho MAZ. 2012. Evaluation of crude oil degradation by Yarrowia lipolytica. Chem Eng Trans 27: 223–228. https://doi.org/10.3303/CET1227038. [Google Scholar]
- Mat Aron NS, Khoo KS, Chew KW, Show PL, Chen WH, Nguyen THP. 2020. Sustainability of the four generations of biofuels – A review. Int J Energy Res 44(12): 9266–9282. https://doi.org/10.1002/er.5557. [CrossRef] [Google Scholar]
- Mathiazhakan K, Ayed D, Tyagi RD. 2016. Kinetics of lipid production at lab scale fermenters by a new isolate of Yarrowia lipolytica S KY7. Bioresour Technol 221: 234–240. https://doi.org/10.1016/j.biortech.2016.09.015. [CrossRef] [PubMed] [Google Scholar]
- Meng X, Yang J, Xu X, Zhang L, Nie Q, Xian M. 2009. Biodiesel production from oleaginous microorganisms. Renew Energy 34(1): 1–5. https://doi.org/10.1016/j.renene.2008.04.014. [CrossRef] [Google Scholar]
- Meullemiestre A, Breil C, Abert-Vian M, Chemat F. 2016. Microwave, ultrasound, thermal treatments, and bead milling as intensification techniques for extraction of lipids from oleaginous Yarrowia lipolytica yeast for a biojetfuel application. Bioresour Technol 211: 190–199. https://doi.org/10.1016/j.biortech.2016.03.040. [CrossRef] [PubMed] [Google Scholar]
- Mlíčková K, Luo Y, D’Andrea S, Peč P, Chardot T, Nicaud JM. 2004. Acyl-CoA oxidase, a key step for lipid accumulation in the yeast Yarrowia lipolytica. J Mol Catal B: Enzym 28(2-3): 81–85. https://doi.org/10.1016/j.molcatb.2004.01.007. [CrossRef] [Google Scholar]
- Moreno LB. 2018. Cellular ecophysiology of microbe: Hydrocarbon and lipid interactions. In: Cellular Ecophysiology of Microbe: Hydrocarbon and Lipid Interactions. https://doi.org/10.1007/978-3-319-50542-8. [Google Scholar]
- Morin N, Cescut J, Beopoulos A, et al. 2011. Transcriptomic analyses during the transition from biomass production to lipid accumulation in the oleaginous yeast Yarrowia lipolytica. PLoS ONE 6(11). https://doi.org/10.1371/journal.pone.0027966. [Google Scholar]
- Nicaud J-M. 2012. Yarrowia lipolytica. Yeast 29: 409–418. https://doi.org/10.1002/yea. [CrossRef] [Google Scholar]
- Niehus X, Crutz-Le Coq AM, Sandoval G, Nicaud JM, Ledesma-Amaro R. 2018. Engineering Yarrowia lipolytica to enhance lipid production from lignocellulosic materials. Biotechnol Biofuels 11(1): 1–10. https://doi.org/10.1186/s13068-018-1010-6. [CrossRef] [PubMed] [Google Scholar]
- Papanikolaou S, Aggelis G. 2002. Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single-stage continuous culture. Bioresour Technol 82(1): 43–49. https://doi.org/10.1016/S0960-8524(01)00149-3. [CrossRef] [PubMed] [Google Scholar]
- Papanikolaou S, Aggelis G. 2010. Yarrowia lipolytica: A model microorganism used for the production of tailor-made lipids. Eur J Lipid Sci Technol 112(6): 639–654. https://doi.org/10.1002/ejlt.200900197. [CrossRef] [Google Scholar]
- Papanikolaou S, Chevalot I, Komaitis M, Aggelis G, Marc I. 2001. Kinetic profile of the cellular lipid composition in an oleaginous Yarrowia lipolytica capable of producing a cocoa-butter substitute from industrial fats. Antonie van Leeuwenhoek Int J Gen Mol Microbiol 80(3-4): 215–224. https://doi.org/10.1023/A:1013083211405. [CrossRef] [Google Scholar]
- Papanikolaou S, Chevalot I, Komaitis M, Marc I, Aggelis G. 2002a. Single cell oil production by Yarrowia lipolytica growing on an industrial derivative of animal fat in batch cultures. Appl Microbiol Biotechnol 58(3): 308–312. https://doi.org/10.1007/s00253-001-0897-0. [CrossRef] [PubMed] [Google Scholar]
- Papanikolaou S, Muniglia L, Chevalot I, Aggelis G, Marc I. 2002b. Yarrowia lipolytica as a potential producer of citric acid from raw glycerol. J Appl Microbiol 92(4): 737–744. https://doi.org/10.1046/j.1365-2672.2002.01577.x. [CrossRef] [PubMed] [Google Scholar]
- Papanikolaou S, Muniglia L, Chevalot I, Aggelis G, Marc I. 2003. Accumulation of a cocoa-butter-like lipid by Yarrowia lipolytica cultivated on agro-industrial residues. Curr Microbiol 46(2): 124–130. https://doi.org/10.1007/s00284-002-3833-3. [CrossRef] [PubMed] [Google Scholar]
- Papanikolaou S, Chevalot I, Galiotou-Panayotou M, Komaitis M, Marc I, Aggelis G. 2007. Industrial derivative of tallow: A promising renewable substrate for microbial lipid, single-cell protein and lipase production by Yarrowia lipolytica. Electron J Biotechnol 10(3): 425–435. https://doi.org/10.2225/vol10-issue3-fulltext-8. [CrossRef] [Google Scholar]
- Papanikolaou S, Chatzifragkou A, Fakas S, et al. 2009. Biosynthesis of lipids and organic acids by Yarrowia lipolytica strains cultivated on glucose. Eur J Lipid Sci Technol 111(12): 1221–1232. https://doi.org/10.1002/ejlt.200900055. [CrossRef] [Google Scholar]
- Paschalidou A, Tsatiris M, Kitikidou K. 2016. Energy crops for biofuel production or for food? – SWOT analysis (case study: Greece). Renew Energy 93: 636–647. https://doi.org/10.1016/j.renene.2016.03.040. [CrossRef] [Google Scholar]
- Patel A, Mikes F, Matsakas L. 2018. An overview of current pretreatment methods used to improve lipid extraction from oleaginous microorganisms. Molecules 23(7). https://doi.org/10.3390/molecules23071562. [Google Scholar]
- Patrignani F, Vannini L, Gardini F, Guerzoni ME, Lanciotti R. 2011. Variability of the lipolytic activity and volatile molecules production by a strain of Yarrowia lipolytica in pork fat and its dependence on environmental conditions. Meat Sci 89(1): 21–26. https://doi.org/10.1016/j.meatsci.2011.03.015. [CrossRef] [PubMed] [Google Scholar]
- Poli JS, Dallé P, Senter L, et al. 2013. Fatty acid methyl esters produced by oleaginous yeast Yarrowia lipolytica QU21: an alternative for vegetable oils. Braz J Biosci 1985: 203–208. [Google Scholar]
- Poli JS, da Silva MAN, Siqueira EP, Pasa VMD, Rosa CA, Valente P. 2014. Microbial lipid produced by Yarrowia lipolytica QU21 using industrial waste: A potential feedstock for biodiesel production. Bioresour Technol 161(2014): 320–326. https://doi.org/10.1016/j.biortech.2014.03.083. [CrossRef] [PubMed] [Google Scholar]
- Poontawee R, Limtong S. 2020. Feeding strategies of two-stage fed-batch cultivation processes for microbial lipid production from sugarcane top hydrolysate and crude glycerol by the oleaginous red yeast Rhodosporidiobolus fluvialis. Microorganisms 8(2): 151. https://doi.org/10.3390/microorganisms8020151. [CrossRef] [Google Scholar]
- Qiao K, Imam Abidi SH, Liu H, et al. 2015. Engineering lipid overproduction in the oleaginous yeast Yarrowia lipolytica. Metab Eng 29: 56–65. https://doi.org/10.1016/j.ymben.2015.02.005. [CrossRef] [PubMed] [Google Scholar]
- Qiao K, Wasylenko TM, Zhou K, Xu P, Stephanopoulos G. 2017. Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism. Nat Biotechnol 35(2): 173–177. https://doi.org/10.1038/nbt.3763. [CrossRef] [PubMed] [Google Scholar]
- Qin L, Liu L, Zeng AP, Wei D. 2017. From low-cost substrates to single cell oils synthesized by oleaginous yeasts. Bioresour Technol 245: 1507–1519. https://doi.org/10.1016/j.biortech.2017.05.163. [CrossRef] [PubMed] [Google Scholar]
- Rakicka M, Lazar Z, Dulermo T, Fickers P, Nicaud JM. 2015. Lipid production by the oleaginous yeast Yarrowia lipolytica using industrial by-products under different culture conditions. Biotechnol Biofuels 8(1): 1–10. https://doi.org/10.1186/s13068-015-0286-z. [CrossRef] [PubMed] [Google Scholar]
- Ratledge C. 2014. The role of malic enzyme as the provider of NADPH in oleaginous microorganisms: A reappraisal and unsolved problems. Biotechnol Lett 36(8): 1557–1568. https://doi.org/10.1007/s10529-014-1532-3. [CrossRef] [PubMed] [Google Scholar]
- Sagnak R, Cochot S, Molina-Jouve C, Nicaud JM, Guillouet SE. 2018. Modulation of the Glycerol Phosphate availability led to concomitant reduction in the citric acid excretion and increase in lipid content and yield in Yarrowia lipolytica. J Biotechnol 265: 40–45. https://doi.org/10.1016/j.jbiotec.2017.11.001. [CrossRef] [PubMed] [Google Scholar]
- Sara M, Brar SK, Blais JF. 2016. Lipid production by Yarrowia lipolytica grown on biodiesel-derived crude glycerol: Optimization of growth parameters and their effects on the fermentation efficiency. RSC Adv 6(93): 90547–90558. https://doi.org/10.1039/c6ra16382c. [CrossRef] [Google Scholar]
- Sarantou S, Stoforos NG, Kalantzi O, Papanikolaou S. 2021. Biotechnological valorization of biodiesel-derived glycerol: Trials with the non-conventional yeasts Yarrowia lipolytica and Rhodosporidium sp. Carbon Resourc Convers 4: 61–75. https://doi.org/10.1016/j.crcon.2020.12.006. [CrossRef] [Google Scholar]
- Seip J, Jackson R, He H, Zhu Q, Hong SP. 2013. Snf1 is a regulator of lipid accumulation in Yarrowia lipolytica. Appl Environ Microbiol 79(23): 7360–7370. https://doi.org/10.1128/AEM.02079-13. [CrossRef] [PubMed] [Google Scholar]
- Sekova VY, Dergacheva DI, Isakova EP, Gessler NN, Tereshina VM, Deryabina YI. 2019. Soluble sugar and lipid readjustments in the Yarrowia lipolytica yeast at various temperatures and ph. Metabolites 9(12). https://doi.org/10.3390/metabo9120307. [CrossRef] [Google Scholar]
- Shitu A, Izhar S, Tahir TM. 2015. Sub-critical water as a green solvent for production of valuable materials from agricultural waste biomass: A review of recent work. Global J Environ 1(3): 255–264. [Google Scholar]
- Silverman AM, Qiao K, Xu P, Stephanopoulos G. 2016. Functional overexpression and characterization of lipogenesis-related genes in the oleaginous yeast Yarrowia lipolytica. Appl Microbiol Biotechnol 100(8): 3781–3798. https://doi.org/10.1007/s00253-016-7376-0. [CrossRef] [PubMed] [Google Scholar]
- Singh A, Olsen SI, Nigam PS. 2011. A viable technology to generate third-generation biofuel. J Chem Technol Biotechnol 86(11): 1349–1353. https://doi.org/10.1002/jctb.2666. [CrossRef] [Google Scholar]
- Tai M, Stephanopoulos G. 2013. Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metab Eng 15(1): 1–9. https://doi.org/10.1016/j.ymben.2012.08.007. [CrossRef] [PubMed] [Google Scholar]
- Tan T, Lu J, Nie K, Deng L, Wang F. 2010. Biodiesel production with immobilized lipase: A review. Biotechnol Adv 28(5): 628–634. https://doi.org/10.1016/j.biotechadv.2010.05.012. [CrossRef] [PubMed] [Google Scholar]
- Taoka Y, Nagano N, Okita Y, Izumida H, Sugimoto S, Hayashi M. 2011. Effect of Tween 80 on the growth, lipid accumulation and fatty acid composition of Thraustochytrium aureum ATCC 34304. J Biosci Bioeng 111(4): 420–424. https://doi.org/10.1016/j.jbiosc.2010.12.010. [CrossRef] [PubMed] [Google Scholar]
- Tchakouteu SS, Kalantzi O, Gardeli C, Koutinas AA, Aggelis G, Papanikolaou S. 2015. Lipid production by yeasts growing on biodiesel-derived crude glycerol: Strain selection and impact of substrate concentration on the fermentation efficiency. J Appl Microbiol 118(4): 911–927. https://doi.org/10.1111/jam.12736. [CrossRef] [PubMed] [Google Scholar]
- Thiru M, Sankh S, Rangaswamy V. 2011. Process for biodiesel production from Cryptococcus curvatus. Bioresour Technol 102(22): 10436–10440. https://doi.org/10.1016/j.biortech.2011.08.102. [CrossRef] [PubMed] [Google Scholar]
- Tran Nguyen PL, Go AW, Huynh LH, Ju YH. 2013. A study on the mechanism of subcritical water treatment to maximize extractable cellular lipids. Biomass Bioenergy 59: 532–539. https://doi.org/10.1016/j.biombioe.2013.08.031. [CrossRef] [Google Scholar]
- Tribst AAL, Franchi MA, Cristianini M. 2008. Ultra-high pressure homogenization treatment combined with lysozyme for controlling Lactobacillus brevis contamination in model system. Innovat Food Sci Emerg Technol 9(3): 265–271. https://doi.org/10.1016/j.ifset.2007.07.012. [CrossRef] [Google Scholar]
- Tsigie YA, Wang CY, Truong CT, Ju YH. 2011. Lipid production from Yarrowia lipolytica Po1g grown in sugarcane bagasse hydrolysate. Bioresour Technol 102(19): 9216–9222. https://doi.org/10.1016/j.biortech.2011.06.047. [CrossRef] [PubMed] [Google Scholar]
- Tsigie YA, Huynh LH, Ahmed IN, Ju YH. 2012. Maximizing biodiesel production from Yarrowia lipolytica Po1g biomass using subcritical water pretreatment. Bioresour Technol 111: 201–207. https://doi.org/10.1016/j.biortech.2012.02.052. [CrossRef] [PubMed] [Google Scholar]
- Wang ZP, Xu HM, Wang GY, Chi Z, Chi ZM. 2013. Disruption of the MIG1 gene enhances lipid biosynthesis in the oleaginous yeast Yarrowia lipolytica ACA-DC 50109. Biochim Biophys Acta – Mol Cell Biol Lipids 1831(4): 675–682. https://doi.org/10.1016/j.bbalip.2012.12.010. [Google Scholar]
- Wang G, Li D, Miao Z, Zhang S, Liang W, Liu L. 2018. Comparative transcriptome analysis reveals multiple functions for Mhy1p in lipid biosynthesis in the oleaginous yeast Yarrowia lipolytica. Biochim Biophys Acta – Mol Cell Biol Lipids 1863(1): 81–90. https://doi.org/10.1016/j.bbalip.2017.10.003. [Google Scholar]
- Wang ZP, Wang QQ, Liu S, Liu XF, Yu XJ, Jiang YL. 2019. Efficient conversion of cane molasses towards high-purity isomaltulose and cellular lipid using an engineered Yarrowia lipolytica strain in fed-batch fermentation. Molecules 24(7). https://doi.org/10.3390/molecules24071228. [PubMed] [Google Scholar]
- Wang J, Ledesma-Amaro R, Wei Y, Ji B, Ji XJ. 2020. Metabolic engineering for increased lipid accumulation in Yarrowia lipolytica – A review. Bioresour Technol 313. https://doi.org/10.1016/j.biortech.2020.123707. [PubMed] [Google Scholar]
- Wasylenko TM, Ahn WS, Stephanopoulos G. 2015. The oxidative pentose phosphate pathway is the primary source of NADPH for lipid overproduction from glucose in Yarrowia lipolytica. Metab Eng 30: 27–39. https://doi.org/10.1016/j.ymben.2015.02.007. [CrossRef] [PubMed] [Google Scholar]
- Wei S, Jian X, Chen J, Zhang C, Hua Q. 2017. Reconstruction of genome-scale metabolic model of Yarrowia lipolytica and its application in overproduction of triacylglycerol. Bioresour Bioprocess 4(1). https://doi.org/10.1186/s40643-017-0180-6. [Google Scholar]
- Xie D. 2017. Integrating cellular and bioprocess engineering in the non-conventional yeast Yarrowia lipolytica for biodiesel production: A review. Front Bioeng Biotechnol 5. https://doi.org/10.3389/fbioe.2017.00065. [PubMed] [Google Scholar]
- Xu P, Qiao K, Stephanopoulos G. 2017. Engineering oxidative stress defense pathways to build a robust lipid production platform in Yarrowia lipolytica. Biotechnol Bioeng 114(7): 1521–1530. https://doi.org/10.1002/bit.26285. [CrossRef] [PubMed] [Google Scholar]
- Xua P, Qiao K, Ahn WS, Stephanopoulos G. 2016. Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals. Proc Natl Acad Sci USA 113(39): 10848–10853. https://doi.org/10.1073/pnas.1607295113. [CrossRef] [PubMed] [Google Scholar]
- Xue J, Balamurugan S, Li T, et al. 2021. Biotechnological approaches to enhance biofuel producing potential of microalgae. Fuel 302: 121169. https://doi.org/10.1016/j.fuel.2021.121169. [Google Scholar]
- Yan FX, Dong GR, Qiang S, Niu YJ, Hu CY, Meng YH. 2020. Overexpression of △12, △15-Desaturases for Enhanced Lipids Synthesis in Yarrowia lipolytica. Front Microbiol 11: 1–11. https://doi.org/10.3389/fmicb.2020.00289. [CrossRef] [PubMed] [Google Scholar]
- Yap BHJ, Dumsday GJ, Scales PJ, Martin GJO. 2015. Energy evaluation of algal cell disruption by high pressure homogenisation. Bioresour Technol 184: 280–285. https://doi.org/10.1016/j.biortech.2014.11.049. [CrossRef] [PubMed] [Google Scholar]
- Yook S Do Kim J, Gong G, et al. 2020. High-yield lipid production from lignocellulosic biomass using engineered xylose-utilizing Yarrowia lipolytica. GCB Bioenergy 12(9): 670–679. https://doi.org/10.1111/gcbb.12699. [CrossRef] [Google Scholar]
- Zhang Y, Adams IP, Ratledge C. 2007. Malic enzyme: The controlling activity for lipid production? Overexpression of malic enzyme in Mucor circinelloides leads to a 2.5-fold increase in lipid accumulation. Microbiology 153(7): 2013–2025. https://doi.org/10.1099/mic.0.2006/002683-0. [CrossRef] [PubMed] [Google Scholar]
- Zhang H, Zhang L, Chen H, et al. 2014. Enhanced lipid accumulation in the yeast Yarrowia lipolytica by over-expression of ATP: Citrate lyase from Mus musculus. J Biotechnol 192(Part A): 78–84. https://doi.org/10.1016/j.jbiotec.2014.10.004. [CrossRef] [PubMed] [Google Scholar]
- Zhang H, Kang X, Xiao N, et al. 2019a. Intracellular expression of Vitreoscilla haemoglobin improves lipid production in Yarrowia lipolytica. Lett Appl Microbiol 68(3): 248–257. https://doi.org/10.1111/lam.13111. [CrossRef] [PubMed] [Google Scholar]
- Zhang S, Jagtap SS, Deewan A, Rao CV. 2019b. pH selectively regulates citric acid and lipid production in Yarrowia lipolytica W29 during nitrogen-limited growth on glucose. J Biotechnol 290: 10–15. https://doi.org/10.1016/j.jbiotec.2018.10.012. [CrossRef] [PubMed] [Google Scholar]
- Zieniuk B, Fabiszewska A. 2019. Yarrowia lipolytica: a beneficious yeast in biotechnology as a rare opportunistic fungal pathogen: A mini review. World J Microbiol Biotechnol 35(1): 1–8. https://doi.org/10.1007/s11274-018-2583-8. [CrossRef] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.