Open Access
Numéro |
OCL
Volume 28, 2021
Soybean / Soja
|
|
---|---|---|
Numéro d'article | 48 | |
Nombre de pages | 12 | |
DOI | https://doi.org/10.1051/ocl/2021033 | |
Publié en ligne | 27 octobre 2021 |
- Al-Ghazi Y, Muller B, Pinloche S, et al. 2003. Temporal responses of Arabidopsis root architecture to phosphate starvation: evidence for the involvement of auxin signalling: Arabidopsis root architecture responses to phosphate starvation. Plant Cell Environ 26: 1053–1066. https://doi.org/10.1046/j.1365-3040.2003.01030.x. [CrossRef] [Google Scholar]
- Bashir W, Anwar S, Zhao Q, Hussain I, Xie F. 2019. Interactive effect of drought and cadmium stress on soybean root morphology and gene expression. Ecotoxicol Environ Saf 175: 90–101. https://doi.org/10.1016/j.ecoenv.2019.03.042. [CrossRef] [PubMed] [Google Scholar]
- Berg S, Kutra D, Kroeger T, et al. 2019. Ilastik: Interactive machine learning for (bio)image analysis. Nat Methods 16: 1226–1232. https://doi.org/10.1038/s41592-019-0582-9. [CrossRef] [PubMed] [Google Scholar]
- Brear EM, Day DA, Smith PMC. 2013. Iron: an essential micronutrient for the legume-rhizobium symbiosis. Front Plant Sci. https://doi.org/10.3389/fpls.2013.00359. [Google Scholar]
- Colbach N, Moreau D, Dugué F, et al. 2020. The response of weed and crop species to shading. How to predict their morphology and plasticity from species traits and ecological indexes? Eur J Agron 121: 126158. https://doi.org/10.1016/j.eja.2020.126158. [CrossRef] [Google Scholar]
- Concha C, Doerner P. 2020. The impact of the rhizobia-legume symbiosis on host root system architecture. J Exp Bot 71: 3902–3921. https://doi.org/10.1093/jxb/eraa198. [CrossRef] [PubMed] [Google Scholar]
- Couchoud M, Salon C, Girodet S, et al. 2020. Pea efficiency of post-drought recovery relies on the strategy to fine-tune nitrogen nutrition. Front Plant Sci 11: 204. https://doi.org/10.3389/fpls.2020.00204. [CrossRef] [PubMed] [Google Scholar]
- Dayoub E, Lamichhane JR, Schoving C, Debaeke P, Maury P. 2021. Early-stage phenotyping of root traits provides insights into the drought tolerance level of soybean cultivars. Agronomy 11: 188. https://doi.org/10.3390/agronomy11010188. [CrossRef] [Google Scholar]
- de Visser CLM, Schreuder R, Stoddard F. 2014. The EU’s dependency on soya bean import for the animal feed industry and potential for EU produced alternatives. OCL 48. https://doi.org/10.1051/ocl/2014021. [Google Scholar]
- European Commission’s Agricultural and Rural Development Department. 2021. Agridata oilseeds and protein crops trade data. https://agridata.ec.europa.eu/extensions/DashboardCereals/OilseedTrade.html (March 3, 2021). [Google Scholar]
- Falk KG, Jubery TZ, O’Rourke JA, et al. 2020. Soybean root system architecture trait study through genotypic, phenotypic, and shape-based clusters. Plant Phenomics 2020: 1–23. https://doi.org/10.34133/2020/1925495. [CrossRef] [Google Scholar]
- Fenta B, Beebe S, Kunert K, et al. 2014. Field phenotyping of soybean roots for drought stress tolerance. Agronomy 4: 418–435. https://doi.org/10.3390/agronomy4030418. [CrossRef] [Google Scholar]
- FoodData Central. Soybeans, mature seeds, raw nutrient. https://fdc.nal.usda.gov/fdc-app.html#/food-details/174270/nutrients (March 2, 2021). [Google Scholar]
- Fried HG, Narayanan S, Fallen B. 2018. Characterization of a soybean (Glycine max L. Merr.) germplasm collection for root traits. PLoS One 13: e0200463. https://doi.org/10.3389/fpls.2018.01728. [CrossRef] [PubMed] [Google Scholar]
- He J, Jin Y, Du Y-L, et al. 2017. Genotypic variation in yield, yield components, root morphology and architecture, in soybean in relation to water and phosphorus supply. Front Plant Sci 8: 1499. https://doi.org/10.3389/fpls.2017.01499. [CrossRef] [PubMed] [Google Scholar]
- Hetrick BAD. 1991. Mycorrhizas and root architecture. Experientia 47: 355–362. https://doi.org/10.1007/BF01972077. [CrossRef] [Google Scholar]
- Ho MD, Rosas JC, Brown KM, Lynch JP. 2005. Root architectural tradeoffs for water and phosphorus acquisition. Funct Plant Biol 32: 737. https://doi.org/10.1071/FP05043. [CrossRef] [PubMed] [Google Scholar]
- Hoogenboom G, Huck MG, Peterson CM. 1987. Root growth rate of soybean as affected by drought stress. Agron J 79: 607–614. https://doi.org/10.2134/agronj1987.00021962007900040004x. [CrossRef] [Google Scholar]
- Hungria M, Mendes IC. 2015. Nitrogen fixation with soybean: the perfect symbiosis? In: de Bruijn FJ, ed. Biol Nitrogen Fixat. Hoboken, NJ, USA: John Wiley & Sons, Inc, pp. 1009–1024. [CrossRef] [Google Scholar]
- Hungria M, Vargas MAT. 2000. Environmental factors affecting N2 fixation in grain legumes in the tropics, with an emphasis on Brazil. Field Crops Res 14. https://doi.org/10.1016/S0378-4290(99)00084-2. [Google Scholar]
- Jeudy C, Adrian M, Baussard C, et al. 2016. RhizoTubes as a new tool for high throughput imaging of plant root development and architecture: test, comparison with pot grown plants and validation. Plant Methods 12: 31. https://doi.org/10.1186/s13007-016-0131-9. [CrossRef] [PubMed] [Google Scholar]
- Keerio MI, Chang SY, Mirjat MA, Lakho MH, Bhatti IP. 2001. The rate of nitrogen fixation in soybean root nodules after heat stress and recovery period. Int J Agric Biol 3: 512–514. https://doi.org/10.3923/jas.2001.297.300. [Google Scholar]
- Kobayashi K, Salam MU. 2000. Comparing simulated and measured values using mean squared deviation and its components. Agron J 92: 345. https://doi.org/10.1007/s100870050043. [CrossRef] [Google Scholar]
- Lagacherie B, Hugo R, Amarger N. 1977. Selection de souches de Rhizobium japonicum d’aprés leur compétitivité pour l’infection. Ann Agron 28: 379–389. [Google Scholar]
- Li X, Zeng R, Liao H. 2016. Improving crop nutrient efficiency through root architecture modifications: Nutrient efficiency and root architecture. J Integr Plant Biol 58: 193–202. https://doi.org/10.1111/jipb.12434. [CrossRef] [PubMed] [Google Scholar]
- Linkohr BI, Williamson LC, Fitter AH, Leyser HMO. 2002. Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis. Plant J 29: 751–760. https://doi.org/10.1046/j.1365-313X.2002.01251.x. [CrossRef] [PubMed] [Google Scholar]
- Liu S, Zhang M, Feng F, Tian Z. 2020. Toward a “green revolution” for soybean. Mol Plant 13: 688–697. https://doi.org/10.1016/j.molp.2020.03.002. [CrossRef] [PubMed] [Google Scholar]
- Lynch JP. 2011. Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops. Plant Physiol 156: 1041–1049. https://doi.org/10.1104/pp.111.175414. [CrossRef] [PubMed] [Google Scholar]
- Lynch JP. 2019. Root phenotypes for improved nutrient capture: an underexploited opportunity for global agriculture. New Phytol 223: 548–564. https://doi.org/10.1111/nph.15738. [CrossRef] [PubMed] [Google Scholar]
- Manavalan LP, Guttikonda SK, Nguyen VT, et al. 2010. Evaluation of diverse soybean germplasm for root growth and architecture. Plant Soil 330: 503–514. https://doi.org/10.1007/s11104-009-0222-8. [CrossRef] [Google Scholar]
- Matsuo N, Takahashi M, Fukami K, Tsuchiya S. 2013. Root growth of two Soybean [Glycine max (L.) Merr.] cultivars grown under different groundwater levels. Plant Production Science 16: 374–382. https://doi.org/10.1626/pps.16.374. [CrossRef] [Google Scholar]
- Munevar F, Wollum AG. 1982. Response of soybean plants to high root temperature as affected by plant cultivar and rhizobium Strain. Agron J 74: 138–142. https://doi.org/10.2134/agronj1982.00021962007400010036x. [CrossRef] [Google Scholar]
- Nutman PS. 1948. Physiological studies on nodule formation: I. The relation between nodulation and lateral root formation in red clover. Ann Bot 12: 81–96. https://doi.org/10.1093/oxfordjournals.aob.a083183. [CrossRef] [Google Scholar]
- Pegelow EJ, Taylor BB, Horrocks RD, et al. 1977. The Gompertz function as a model for cotton hypocotyl elongation. Agron J 69: 875–878. https://doi.org/10.2134/agronj1977.00021962006900050038x. [CrossRef] [Google Scholar]
- Peoples MB, Brockwell J, Herridge DF, et al. 2009. The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis 48: 1–17. https://doi.org/10.1007/BF03179980. [CrossRef] [Google Scholar]
- Poehlman JM. 1987. Breeding soybeans. In: Breed Field Crops. Dordrecht: Springer Netherlands, pp. 421–450. [CrossRef] [Google Scholar]
- Popp C, Ott T. 2011. Regulation of signal transduction and bacterial infection during root nodule symbiosis. Curr Opin Plant Biol 14: 458–467. https://doi.org/10.1016/j.pbi.2011.03.016. [CrossRef] [PubMed] [Google Scholar]
- Preissel S, Reckling M, Schläfke N, Zander P. 2015. Magnitude and farm-economic value of grain legume pre-crop benefits in Europe: a review. Field Crops Res 175: 64–79. https://doi.org/10.1016/j.fcr.2015.01.012. [CrossRef] [Google Scholar]
- Prudent M, Vernoud V, Girodet S, Salon C. 2016. How nitrogen fixation is modulated in response to different water availability levels and during recovery: A structural and functional study at the whole plant level. Plant Soil 399: 1–12. https://doi.org/10.1007/s11104-015-2674-3. [CrossRef] [Google Scholar]
- R Core Team. 2019. R: a language and environment for statistical computing. Vienna, Austria: R Core Team. [Google Scholar]
- Reijnders L, Soret S. 2003. Quantification of the environmental impact of different dietary protein choices. Am J Clin Nutr 78: 664S–668S. https://doi.org/10.1093/ajcn/78.3.664S. [CrossRef] [PubMed] [Google Scholar]
- Saleem M, Law AD, Sahib MR, Pervaiz ZH, Zhang Q. 2018. Impact of root system architecture on rhizosphere and root microbiome. Rhizosphere 6: 47–51. https://doi.org/10.1016/j.rhisph.2018.02.003. [CrossRef] [Google Scholar]
- Schindelin J, Arganda-Carreras I, Frise E, et al. 2012. Fiji: an open-source platform for biological-image analysis. Nat Methods 9: 676–682. https://doi.org/10.1038/nmeth.2019. [CrossRef] [PubMed] [Google Scholar]
- Senaratne R, Amornpimol C, Hardarson G. 1987. Effect of combined nitrogen on nitrogen fixation of soybean (Glycine max L. Merill.) as affected by cultivar and rhizobial strain. Plant Soil 103: 45–50. https://doi.org/10.1007/BF02370666. [CrossRef] [Google Scholar]
- Sharaf H, Rodrigues RR, Moon J, et al. 2019. Unprecedented bacterial community richness in soybean nodules vary with cultivar and water status. Microbiome 7: 63. https://doi.org/10.1186/s40168-019-0676-8. [CrossRef] [PubMed] [Google Scholar]
- Singleton PW, Bohlool BB. 1984. Effect of salinity on nodule formation by soybean. Plant Physiol 74: 72–76. https://doi.org/10.1104/pp.74.1.72. [CrossRef] [PubMed] [Google Scholar]
- Streeter JG. 2003. Effects of drought on nitrogen fixation in soybean root nodules. Plant Cell Environ 26: 1199–1204. https://doi.org/10.1046/j.1365-3040.2003.01041.x. [CrossRef] [Google Scholar]
- Tjørve KMC, Tjørve E. 2017. The use of Gompertz models in growth analyses, and new Gompertz-model approach: An addition to the Unified-Richards family. PLoS One 12: e0178691. https://doi.org/10.1371/journal.pone.0178691. [CrossRef] [PubMed] [Google Scholar]
- Udvardi M, Poole PS. 2013. Transport and metabolism in legume-rhizobia symbioses. Ann Rev Plant Biol 64: 781–805. https://doi.org/10.1146/annurev-arplant-050312-120235. [CrossRef] [PubMed] [Google Scholar]
- Voisin AS, Salon C, Jeudy C, Warembourg FR. 2003. Symbiotic N2 fixation activity in relation to C economy of Pisum sativum L. as a function of plant phenology. J Exp Bot 54: 2733–2744. https://doi.org/10.1093/jxb/erg290. [CrossRef] [PubMed] [Google Scholar]
- Voisin AS, Munier-Jolain NG, Salon C. 2010. The nodulation process is tightly adjusted to plant growth. An analysis using environmentally and genetically induced variation of nodule number and biomass in pea. Plant Soil 337: 399–412. https://doi.org/10.1007/s11104-010-0536-6. [CrossRef] [Google Scholar]
- Westhoff P. 2009. The Economics of biological nitrogen fixation in the global economy. In: Emerich DW, Krishnan HB, eds. Agronomy Monographs. Madison, WI, USA: American Society of Agronomy and Soil Science Society of America, pp. 309–328. https://doi.org/10.2134/agronmonogr52.c11. [Google Scholar]
- Xiong R, Liu S, Considine MJ, et al. 2020. Root system architecture, physiological and transcriptional traits of soybean (Glycine max L.) in response to water deficit: A review. Physiol Plant l: 13201. https://doi.org/10.1111/ppl.13201. [Google Scholar]
- Yang Y, Zhao Q, Li X, et al. 2017. Characterization of genetic basis on synergistic interactions between root architecture and biological nitrogen fixation in soybean. Front Plant Sci 8: 1466. https://doi.org/10.3389/fpls.2017.01466. [CrossRef] [PubMed] [Google Scholar]
- York LM, Galindo-Castañeda T, Schussler JR, Lynch JP. 2015. Evolution of US maize (Zea mays L.) root architectural and anatomical phenes over the past 100 years corresponds to increased tolerance of nitrogen stress. J Exp Bot 66: 2347–2358. https://doi.org/10.1093/jxb/erv074. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.