Numéro |
OCL
Volume 27, 2020
Microbiota, Nutrition and Lipids: consequences on Health
|
|
---|---|---|
Numéro d'article | 70 | |
Nombre de pages | 7 | |
DOI | https://doi.org/10.1051/ocl/2020070 | |
Publié en ligne | 18 décembre 2020 |
- Abulizi N, Quin C, Brown K, Chan YK, Gill SK, Gibson DL. 2019. Gut Mucosal Proteins and Bacteriome Are Shaped by the Saturation Index of Dietary Lipids. Nutrients 11: 418. https://doi.org/10.3390/nu11020418. [Google Scholar]
- Ang QY, Alexander M, Newman JC, et al. 2020. Ketogenic Diets Alter the Gut Microbiome Resulting in Decreased Intestinal Th17 Cells. Cell 181: 1263–1275. https://doi.org/10.1016/j.cell.2020.04.027. [CrossRef] [PubMed] [Google Scholar]
- Backhed F, Manchester JK, Semenkovich CF, Gordon JI. 2007. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci USA 104: 979–84. [CrossRef] [PubMed] [Google Scholar]
- Bisanz JE, Upadhyay V, Turnbaugh JA, Ly K, Turnbaugh PJ. 2019. Meta-Analysis Reveals Reproducible Gut Microbiome Alterations in Response to a High-Fat Diet. Cell Host Microbe 26: 265–272. https://doi.org/10.1016/j.chom.2019.06.013. [CrossRef] [PubMed] [Google Scholar]
- Bourgin M, Labarthe S, Kriaa A, et al. 2020. Exploring the Bacterial Impact on Cholesterol Cycle: A Numerical Study. Front Microbiol 11: 1121. https://doi.org/10.3389/fmicb.2020.01121. [CrossRef] [PubMed] [Google Scholar]
- Busnelli M, Manzini S, Jablaoui A, et al. 2020. Fat-Shaped Microbiota Affects Lipid Metabolism, Liver Steatosis, and Intestinal Homeostasis in Mice Fed a Low-Protein Diet. Mol Nutr Food Res 64: e1900835. https://doi.org/10.1002/mnfr.201900835. [CrossRef] [PubMed] [Google Scholar]
- Cani PD, Amar J, Iglesias MA, et al. 2007. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56: 1761–72. [CrossRef] [PubMed] [Google Scholar]
- Caesar R, Tremaroli V, Kovatcheva-Datchary P, Cani PD, Bäckhed F. 2015. Crosstalk between Gut Microbiota and Dietary Lipids Aggravates WAT Inflammation through TLR Signaling. Cell Metab 22: 658–68. https://doi.org/10.1016/j.cmet.2015.07.026. [CrossRef] [PubMed] [Google Scholar]
- David LA, Maurice CF, Carmody RN, et al. 2014. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505: 559–63. https://doi.org/10.1038/nature12820. [PubMed] [Google Scholar]
- Devillard E, McIntosh FM, Duncan SH, Wallace RJ. 2007. Metabolism of linoleic acid by human gut bacteria: Different routes for biosynthesis of conjugated linoleic acid. J Bacteriol 189: 2566–2570. [CrossRef] [PubMed] [Google Scholar]
- Devkota S, Wang Y, Musch MW, et al. 2012. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10-/- mice. Nature 487: 104–8. [PubMed] [Google Scholar]
- Duca F, Gérard P, Covasa M, Lepage P. Metabolic interplay between gut bacteria and their host. In: Delhanty PJD, van der Lely AJ, eds. How Gut and Brain Control Metabolism. Front Horm Res. Basel: Karger, 2014, vol. 42, pp. 73–82. https://doi.org/10.1159/000358315. [CrossRef] [Google Scholar]
- Faith JJ, Guruge JL, Charbonneau M, et al. 2013. The long-term stability of the human gut microbiota. Science 341(6141):1237439. https://doi.org/10.1126/science.1237439. [Google Scholar]
- Fleissner CK, Huebel N, Abd El-Bary MM, Loh G, Klaus S, Blaut M. Absence of intestinal microbiota does not protect mice from diet-induced obesity. 2010. Br J Nutr 104: 919–929. https://doi.org/10.1017/S0007114510001303. [CrossRef] [PubMed] [Google Scholar]
- Fu J, Bonder MJ, Cenit MC, et al. 2015. The Gut Microbiome Contributes to a Substantial Proportion of the Variation in Blood Lipids. Circ Res 117: 817–24. https://doi.org/10.1161/CIRCRESAHA.115.306807. [CrossRef] [PubMed] [Google Scholar]
- Gérard P. 2014. Metabolism of Cholesterol and Bile Acids by the Gut Microbiota. Pathogens 3: 14–24. [Google Scholar]
- Gérard P. 2016. Gut microbiota and obesity. Cell Mol Life Sci 73: 147–62. https://doi.org/10.1007/s00018-015-2061-5. [CrossRef] [PubMed] [Google Scholar]
- Gérard P. Gastrointestinal Tract: Microbial Metabolism of Steroids. In: Goldfine H, ed. Health Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids. Handbook of Hydrocarbon and Lipid Microbiology. Springer Nature Switzerland, 2020, pp. 389–399. [Google Scholar]
- Gérard P, Bernalier-Donadille A. 2007. Les fonctions majeures du microbiote intestinal. Cah Nutr Diet 42: S28–S36. [CrossRef] [Google Scholar]
- Gérard P, Lepercq P, Leclerc M, Gavini F, Raibaud P, Juste C. 2007. Bacteroides sp. strain D8, the first cholesterol-reducing bacterium isolated from human feces. Appl Environ Microbiol 73: 5742–9. [Google Scholar]
- Johnson EL, Heaver SL, Waters JL, et al. 2020. Sphingolipids produced by gut bacteria enter host metabolic pathways impacting ceramide levels. Nat Commun 11: 2471. https://doi.org/10.1038/s41467-020-16274-w. [Google Scholar]
- Just S, Mondot S, Ecker J, et al. 2018. The gut microbiota drives the impact of bile acids and fat source in diet on mouse metabolism. Microbiome 6: 134. https://doi.org/10.1186/s40168-018-0510-8. [CrossRef] [PubMed] [Google Scholar]
- Juste C. 2005. Acides gras alimentaires, flore intestinale et cancer. Bull Cancer 92: 708–721. [PubMed] [Google Scholar]
- Kenny DJ, Plichta DR, Shungin D, et al. 2020. Cholesterol Metabolism by Uncultured Human Gut Bacteria Influences Host Cholesterol Level. Cell Host Microbe 28: 245–257. https://doi.org/10.1016/j.chom.2020.05.013. [CrossRef] [PubMed] [Google Scholar]
- Knight R, Callewaert C, Marotz C, et al. 2017. The Microbiome and Human Biology. Annu Rev Genomics Hum Genet 18: 65–86. https://doi.org/10.1146/annurev-genom-083115-022438. [CrossRef] [PubMed] [Google Scholar]
- Kriaa A, Bourgin M, Potiron A, et al. 2019. Microbial impact on cholesterol and bile acid metabolism: current status and future prospects. J Lipid Res 60: 323–332. https://doi.org/10.1194/jlr.R088989. [CrossRef] [PubMed] [Google Scholar]
- Kübeck R, Bonet-Ripoll C, Hoffmann C, et al. 2016. Dietary fat and gut microbiota interactions determine diet-induced obesity in mice. Mol Metab 5: 1162–1174. https://doi.org/10.1016/j.molmet.2016.10.001. [CrossRef] [PubMed] [Google Scholar]
- Le Chatelier E, Nielsen T, Qin J, et al. 2013. Richness of human gut microbiome correlates with metabolic markers. Nature 500: 541–6. https://doi.org/10.1038/nature12506. [CrossRef] [PubMed] [Google Scholar]
- Le Roy T, Lécuyer E, Chassaing B, et al. 2019. The intestinal microbiota regulates host cholesterol homeostasis. BMC Biol 17: 94. https://doi.org/10.1186/s12915-019-0715-8. [CrossRef] [PubMed] [Google Scholar]
- Li J, Jia H, Cai X, et al. 2014. An integrated catalog of reference genes in the human gut microbiome. Nat Biotechnol 32: 834–841. https://doi.org/10.1038/nbt.2942. [CrossRef] [PubMed] [Google Scholar]
- Li H, Zhu Y, Zhao F, et al. 2017. Fish oil, lard and soybean oil differentially shape gut microbiota of middle-aged rats. Sci Rep 7: 826. [CrossRef] [PubMed] [Google Scholar]
- Lloyd-Price J, Abu-Ali G, Huttenhower C. 2016. The healthy human microbiome. Genome Med 8: 51. https://doi.org/10.1186/s13073-016-0307-y. [CrossRef] [PubMed] [Google Scholar]
- Martinez-Guryn K, Hubert N, Frazier K, et al. 2018. Small Intestine Microbiota Regulate Host Digestive and Absorptive Adaptive Responses to Dietary Lipids. Cell Host Microbe 23: 458–469. https://doi.org/10.1016/j.chom.2018.03.011. [CrossRef] [PubMed] [Google Scholar]
- Mokkala K, Houttu N, Cansev T, Laitinen K. 2020. Interactions of dietary fat with the gut microbiota: Evaluation of mechanisms and metabolic consequences. Clin Nutr 39: 994–1018. https://doi.org/10.1016/j.clnu.2019.05.003. [CrossRef] [PubMed] [Google Scholar]
- Müller VM, Zietek T, Rohm F, et al. 2016. Gut barrier impairment by high-fat diet in mice depends on housing conditions. Mol Nutr Food Res 60: 897–908. https://doi.org/10.1002/mnfr.201500775. [CrossRef] [PubMed] [Google Scholar]
- Muralidharan J, Galiè S, Hernández-Alonso P, Bulló M, Salas-Salvadó J. 2019. Plant-Based Fat, Dietary Patterns Rich in Vegetable Fat and Gut Microbiota Modulation. Front Nutr 6: 157. https://doi.org/10.3389/fnut.2019.00157. [Google Scholar]
- Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO. 2007. Development of the human infant intestinal microbiota. PLoS Biol 5: e177. [CrossRef] [PubMed] [Google Scholar]
- Rabot S, Membrez M, Bruneau A, et al. 2010. Germ-free C57BL/6J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism. Faseb J 24: 4948–59. [CrossRef] [PubMed] [Google Scholar]
- Rabot S, Membrez M, Blancher F, et al. 2016. High fat diet drives obesity regardless the composition of gut microbiota in mice. Sci Rep 6: 32484. [CrossRef] [PubMed] [Google Scholar]
- Safari Z, Gérard P. 2019. The links between the gut microbiome and non-alcoholic fatty liver disease (NAFLD). Cell Mol Life Sci 76: 1541–1558. https://doi.org/10.1007/s00018-019-03011-w. [Google Scholar]
- Safari Z, Monnoye M, Abuja PM, et al. 2019. Steatosis and gut microbiota dysbiosis induced by high-fat diet are reversed by 1-week chow diet administration. Nutr Res 71: 72–88. https://doi.org/10.1016/j.nutres.2019.09.004. [Google Scholar]
- Safari Z, Bruneau A, Monnoye M, et al. 2020. Murine Genetic Background Overcomes Gut Microbiota Changes to Explain Metabolic Response to High-Fat Diet. Nutrients 12: 287. https://doi.org/10.3390/nu12020287. [Google Scholar]
- Thorasin T, Hoyles L, McCartney AL. 2015. Dynamics and diversity of the ’Atopobium cluster’ in the human faecal microbiota, and phenotypic characterization of ’Atopobium cluster’ isolates. Microbiology 161: 565–79. https://doi.org/10.1099/mic.0.000016. [CrossRef] [PubMed] [Google Scholar]
- Velagapudi VR, Hezaveh R, Reigstad CS, et al. 2010. The gut microbiota modulates host energy and lipid metabolism in mice. J Lipid Res 51: 1101–1112. https://doi.org/10.1194/jlr.M002774. [CrossRef] [PubMed] [Google Scholar]
- Vulevic J, McCartney AL, Gee JM, Johnson IT, Gibson GR. 2004. Microbial species involved in production of 1,2-sn-diacylglycerol and effects of phosphatidylcholine on human fecal microbiota. Appl Environ Microbiol 70: 5659–66. https://doi.org/10.1128/AEM.70.9.5659-5666.2004. [Google Scholar]
- Wan Y, Wang F, Yuan J, et al. 2019. Effects of dietary fat on gut microbiota and faecal metabolites, and their relationship with cardiometabolic risk factors: a 6-month randomised controlled-feeding trial. Gut 68: 1417–1429. https://doi.org/10.1136/gutjnl-2018-317609. [CrossRef] [PubMed] [Google Scholar]
- Watson H, Mitra S, Croden FC, et al. 2018. A randomised trial of the effect of omega-3 polyunsaturated fatty acid supplements on the human intestinal microbiota. Gut 67: 1974–1983. https://doi.org/10.1136/gutjnl-2017-314968. [CrossRef] [PubMed] [Google Scholar]
- Wolters M, Ahrens J, Romaní-Pérez M, et al. 2019. Dietary fat, the gut microbiota, and metabolic health – A systematic review conducted within the MyNewGut project. Clin Nutr 38: 2504–2520. https://doi.org/10.1016/j.clnu.2018.12.024. [CrossRef] [PubMed] [Google Scholar]
- Zhang Y, Zhou S, Zhou Y, Yu L, Zhang L, Wang Y. 2018. Altered gut microbiome composition in children with refractory epilepsy after ketogenic diet. Epilepsy Res 145: 163–168. https://doi.org/10.1016/j.eplepsyres.2018.06.015. [CrossRef] [PubMed] [Google Scholar]
- Zheng CJ, Yoo JS, Lee TG, Cho HY, Kim YH, Kim WG. 2005. Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids. FEBS Lett 579: 5157–62. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.