Issue |
OCL
Volume 27, 2020
Microbiota, Nutrition and Lipids: consequences on Health
|
|
---|---|---|
Article Number | 70 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/ocl/2020070 | |
Published online | 18 December 2020 |
- Abulizi N, Quin C, Brown K, Chan YK, Gill SK, Gibson DL. 2019. Gut Mucosal Proteins and Bacteriome Are Shaped by the Saturation Index of Dietary Lipids. Nutrients 11: 418. https://doi.org/10.3390/nu11020418. [Google Scholar]
- Ang QY, Alexander M, Newman JC, et al. 2020. Ketogenic Diets Alter the Gut Microbiome Resulting in Decreased Intestinal Th17 Cells. Cell 181: 1263–1275. https://doi.org/10.1016/j.cell.2020.04.027. [CrossRef] [PubMed] [Google Scholar]
- Backhed F, Manchester JK, Semenkovich CF, Gordon JI. 2007. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci USA 104: 979–84. [CrossRef] [PubMed] [Google Scholar]
- Bisanz JE, Upadhyay V, Turnbaugh JA, Ly K, Turnbaugh PJ. 2019. Meta-Analysis Reveals Reproducible Gut Microbiome Alterations in Response to a High-Fat Diet. Cell Host Microbe 26: 265–272. https://doi.org/10.1016/j.chom.2019.06.013. [CrossRef] [PubMed] [Google Scholar]
- Bourgin M, Labarthe S, Kriaa A, et al. 2020. Exploring the Bacterial Impact on Cholesterol Cycle: A Numerical Study. Front Microbiol 11: 1121. https://doi.org/10.3389/fmicb.2020.01121. [CrossRef] [PubMed] [Google Scholar]
- Busnelli M, Manzini S, Jablaoui A, et al. 2020. Fat-Shaped Microbiota Affects Lipid Metabolism, Liver Steatosis, and Intestinal Homeostasis in Mice Fed a Low-Protein Diet. Mol Nutr Food Res 64: e1900835. https://doi.org/10.1002/mnfr.201900835. [CrossRef] [PubMed] [Google Scholar]
- Cani PD, Amar J, Iglesias MA, et al. 2007. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56: 1761–72. [CrossRef] [PubMed] [Google Scholar]
- Caesar R, Tremaroli V, Kovatcheva-Datchary P, Cani PD, Bäckhed F. 2015. Crosstalk between Gut Microbiota and Dietary Lipids Aggravates WAT Inflammation through TLR Signaling. Cell Metab 22: 658–68. https://doi.org/10.1016/j.cmet.2015.07.026. [CrossRef] [PubMed] [Google Scholar]
- David LA, Maurice CF, Carmody RN, et al. 2014. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505: 559–63. https://doi.org/10.1038/nature12820. [PubMed] [Google Scholar]
- Devillard E, McIntosh FM, Duncan SH, Wallace RJ. 2007. Metabolism of linoleic acid by human gut bacteria: Different routes for biosynthesis of conjugated linoleic acid. J Bacteriol 189: 2566–2570. [CrossRef] [PubMed] [Google Scholar]
- Devkota S, Wang Y, Musch MW, et al. 2012. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10-/- mice. Nature 487: 104–8. [PubMed] [Google Scholar]
- Duca F, Gérard P, Covasa M, Lepage P. Metabolic interplay between gut bacteria and their host. In: Delhanty PJD, van der Lely AJ, eds. How Gut and Brain Control Metabolism. Front Horm Res. Basel: Karger, 2014, vol. 42, pp. 73–82. https://doi.org/10.1159/000358315. [CrossRef] [Google Scholar]
- Faith JJ, Guruge JL, Charbonneau M, et al. 2013. The long-term stability of the human gut microbiota. Science 341(6141):1237439. https://doi.org/10.1126/science.1237439. [Google Scholar]
- Fleissner CK, Huebel N, Abd El-Bary MM, Loh G, Klaus S, Blaut M. Absence of intestinal microbiota does not protect mice from diet-induced obesity. 2010. Br J Nutr 104: 919–929. https://doi.org/10.1017/S0007114510001303. [CrossRef] [PubMed] [Google Scholar]
- Fu J, Bonder MJ, Cenit MC, et al. 2015. The Gut Microbiome Contributes to a Substantial Proportion of the Variation in Blood Lipids. Circ Res 117: 817–24. https://doi.org/10.1161/CIRCRESAHA.115.306807. [CrossRef] [PubMed] [Google Scholar]
- Gérard P. 2014. Metabolism of Cholesterol and Bile Acids by the Gut Microbiota. Pathogens 3: 14–24. [Google Scholar]
- Gérard P. 2016. Gut microbiota and obesity. Cell Mol Life Sci 73: 147–62. https://doi.org/10.1007/s00018-015-2061-5. [CrossRef] [PubMed] [Google Scholar]
- Gérard P. Gastrointestinal Tract: Microbial Metabolism of Steroids. In: Goldfine H, ed. Health Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids. Handbook of Hydrocarbon and Lipid Microbiology. Springer Nature Switzerland, 2020, pp. 389–399. [Google Scholar]
- Gérard P, Bernalier-Donadille A. 2007. Les fonctions majeures du microbiote intestinal. Cah Nutr Diet 42: S28–S36. [CrossRef] [Google Scholar]
- Gérard P, Lepercq P, Leclerc M, Gavini F, Raibaud P, Juste C. 2007. Bacteroides sp. strain D8, the first cholesterol-reducing bacterium isolated from human feces. Appl Environ Microbiol 73: 5742–9. [Google Scholar]
- Johnson EL, Heaver SL, Waters JL, et al. 2020. Sphingolipids produced by gut bacteria enter host metabolic pathways impacting ceramide levels. Nat Commun 11: 2471. https://doi.org/10.1038/s41467-020-16274-w. [Google Scholar]
- Just S, Mondot S, Ecker J, et al. 2018. The gut microbiota drives the impact of bile acids and fat source in diet on mouse metabolism. Microbiome 6: 134. https://doi.org/10.1186/s40168-018-0510-8. [CrossRef] [PubMed] [Google Scholar]
- Juste C. 2005. Acides gras alimentaires, flore intestinale et cancer. Bull Cancer 92: 708–721. [PubMed] [Google Scholar]
- Kenny DJ, Plichta DR, Shungin D, et al. 2020. Cholesterol Metabolism by Uncultured Human Gut Bacteria Influences Host Cholesterol Level. Cell Host Microbe 28: 245–257. https://doi.org/10.1016/j.chom.2020.05.013. [CrossRef] [PubMed] [Google Scholar]
- Knight R, Callewaert C, Marotz C, et al. 2017. The Microbiome and Human Biology. Annu Rev Genomics Hum Genet 18: 65–86. https://doi.org/10.1146/annurev-genom-083115-022438. [CrossRef] [PubMed] [Google Scholar]
- Kriaa A, Bourgin M, Potiron A, et al. 2019. Microbial impact on cholesterol and bile acid metabolism: current status and future prospects. J Lipid Res 60: 323–332. https://doi.org/10.1194/jlr.R088989. [CrossRef] [PubMed] [Google Scholar]
- Kübeck R, Bonet-Ripoll C, Hoffmann C, et al. 2016. Dietary fat and gut microbiota interactions determine diet-induced obesity in mice. Mol Metab 5: 1162–1174. https://doi.org/10.1016/j.molmet.2016.10.001. [CrossRef] [PubMed] [Google Scholar]
- Le Chatelier E, Nielsen T, Qin J, et al. 2013. Richness of human gut microbiome correlates with metabolic markers. Nature 500: 541–6. https://doi.org/10.1038/nature12506. [CrossRef] [PubMed] [Google Scholar]
- Le Roy T, Lécuyer E, Chassaing B, et al. 2019. The intestinal microbiota regulates host cholesterol homeostasis. BMC Biol 17: 94. https://doi.org/10.1186/s12915-019-0715-8. [CrossRef] [PubMed] [Google Scholar]
- Li J, Jia H, Cai X, et al. 2014. An integrated catalog of reference genes in the human gut microbiome. Nat Biotechnol 32: 834–841. https://doi.org/10.1038/nbt.2942. [CrossRef] [PubMed] [Google Scholar]
- Li H, Zhu Y, Zhao F, et al. 2017. Fish oil, lard and soybean oil differentially shape gut microbiota of middle-aged rats. Sci Rep 7: 826. [CrossRef] [PubMed] [Google Scholar]
- Lloyd-Price J, Abu-Ali G, Huttenhower C. 2016. The healthy human microbiome. Genome Med 8: 51. https://doi.org/10.1186/s13073-016-0307-y. [CrossRef] [PubMed] [Google Scholar]
- Martinez-Guryn K, Hubert N, Frazier K, et al. 2018. Small Intestine Microbiota Regulate Host Digestive and Absorptive Adaptive Responses to Dietary Lipids. Cell Host Microbe 23: 458–469. https://doi.org/10.1016/j.chom.2018.03.011. [CrossRef] [PubMed] [Google Scholar]
- Mokkala K, Houttu N, Cansev T, Laitinen K. 2020. Interactions of dietary fat with the gut microbiota: Evaluation of mechanisms and metabolic consequences. Clin Nutr 39: 994–1018. https://doi.org/10.1016/j.clnu.2019.05.003. [CrossRef] [PubMed] [Google Scholar]
- Müller VM, Zietek T, Rohm F, et al. 2016. Gut barrier impairment by high-fat diet in mice depends on housing conditions. Mol Nutr Food Res 60: 897–908. https://doi.org/10.1002/mnfr.201500775. [CrossRef] [PubMed] [Google Scholar]
- Muralidharan J, Galiè S, Hernández-Alonso P, Bulló M, Salas-Salvadó J. 2019. Plant-Based Fat, Dietary Patterns Rich in Vegetable Fat and Gut Microbiota Modulation. Front Nutr 6: 157. https://doi.org/10.3389/fnut.2019.00157. [Google Scholar]
- Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO. 2007. Development of the human infant intestinal microbiota. PLoS Biol 5: e177. [CrossRef] [PubMed] [Google Scholar]
- Rabot S, Membrez M, Bruneau A, et al. 2010. Germ-free C57BL/6J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism. Faseb J 24: 4948–59. [CrossRef] [PubMed] [Google Scholar]
- Rabot S, Membrez M, Blancher F, et al. 2016. High fat diet drives obesity regardless the composition of gut microbiota in mice. Sci Rep 6: 32484. [CrossRef] [PubMed] [Google Scholar]
- Safari Z, Gérard P. 2019. The links between the gut microbiome and non-alcoholic fatty liver disease (NAFLD). Cell Mol Life Sci 76: 1541–1558. https://doi.org/10.1007/s00018-019-03011-w. [Google Scholar]
- Safari Z, Monnoye M, Abuja PM, et al. 2019. Steatosis and gut microbiota dysbiosis induced by high-fat diet are reversed by 1-week chow diet administration. Nutr Res 71: 72–88. https://doi.org/10.1016/j.nutres.2019.09.004. [Google Scholar]
- Safari Z, Bruneau A, Monnoye M, et al. 2020. Murine Genetic Background Overcomes Gut Microbiota Changes to Explain Metabolic Response to High-Fat Diet. Nutrients 12: 287. https://doi.org/10.3390/nu12020287. [Google Scholar]
- Thorasin T, Hoyles L, McCartney AL. 2015. Dynamics and diversity of the ’Atopobium cluster’ in the human faecal microbiota, and phenotypic characterization of ’Atopobium cluster’ isolates. Microbiology 161: 565–79. https://doi.org/10.1099/mic.0.000016. [CrossRef] [PubMed] [Google Scholar]
- Velagapudi VR, Hezaveh R, Reigstad CS, et al. 2010. The gut microbiota modulates host energy and lipid metabolism in mice. J Lipid Res 51: 1101–1112. https://doi.org/10.1194/jlr.M002774. [CrossRef] [PubMed] [Google Scholar]
- Vulevic J, McCartney AL, Gee JM, Johnson IT, Gibson GR. 2004. Microbial species involved in production of 1,2-sn-diacylglycerol and effects of phosphatidylcholine on human fecal microbiota. Appl Environ Microbiol 70: 5659–66. https://doi.org/10.1128/AEM.70.9.5659-5666.2004. [Google Scholar]
- Wan Y, Wang F, Yuan J, et al. 2019. Effects of dietary fat on gut microbiota and faecal metabolites, and their relationship with cardiometabolic risk factors: a 6-month randomised controlled-feeding trial. Gut 68: 1417–1429. https://doi.org/10.1136/gutjnl-2018-317609. [CrossRef] [PubMed] [Google Scholar]
- Watson H, Mitra S, Croden FC, et al. 2018. A randomised trial of the effect of omega-3 polyunsaturated fatty acid supplements on the human intestinal microbiota. Gut 67: 1974–1983. https://doi.org/10.1136/gutjnl-2017-314968. [CrossRef] [PubMed] [Google Scholar]
- Wolters M, Ahrens J, Romaní-Pérez M, et al. 2019. Dietary fat, the gut microbiota, and metabolic health – A systematic review conducted within the MyNewGut project. Clin Nutr 38: 2504–2520. https://doi.org/10.1016/j.clnu.2018.12.024. [CrossRef] [PubMed] [Google Scholar]
- Zhang Y, Zhou S, Zhou Y, Yu L, Zhang L, Wang Y. 2018. Altered gut microbiome composition in children with refractory epilepsy after ketogenic diet. Epilepsy Res 145: 163–168. https://doi.org/10.1016/j.eplepsyres.2018.06.015. [CrossRef] [PubMed] [Google Scholar]
- Zheng CJ, Yoo JS, Lee TG, Cho HY, Kim YH, Kim WG. 2005. Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids. FEBS Lett 579: 5157–62. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.