Open Access
Issue
OCL
Volume 25, Number 4, July-August 2018
Article Number D408
Number of page(s) 7
Section Lipids & Brain IV: Lipids in Alzheimer’s Disease / Lipids & Brain IV : les lipides dans la maladie d’Alzheimer
DOI https://doi.org/10.1051/ocl/2018024
Published online 30 March 2018
  • Ammar MR, Humeau Y, Hanauer A, Nieswandt B, Bader MF, Vitale N. 2013a. The Coffin-Lowry syndrome-associated protein RSK2 regulates neuritis outgrowth through phosphorylation of phospholipase D1 (PLD1) and synthesis of phosphatidic acid. J Neurosci 33(50): 19470–19479. [CrossRef] [PubMed] [Google Scholar]
  • Ammar MR, Kassas N, Chasserot-Golaz S, Bader MF, Vitale N. 2013b. Lipids in regulated Eexocytosis: what are they doing? Front Endocrinol (Lausanne) 4: 125. [PubMed] [Google Scholar]
  • Ammar MR, Kassas N, Bader MF, Vitale N. 2014. Phosphatidic acid in neuronal development: a node for membrane and cytoskeleton rearrangements. Biochimie 107: 51–57. DOI: 10.1016/j.biochi.2014.07.026. [CrossRef] [PubMed] [Google Scholar]
  • Ammar MR, Thahouly T, Hanauer A, Stegner D, Nieswandt B, Vitale N. 2015. PLD1 participates in BDNF-induced signalling in cortical neurons. Sci Rep 5: 14778. [CrossRef] [PubMed] [Google Scholar]
  • Bader MF, Vitale N. 2009. Phospholipase D in calcium-regulated exocytosis: lessons from chromaffin cells. Biochim Biophys Acta 1791(9): 936–941. [CrossRef] [PubMed] [Google Scholar]
  • Bader MF, Holz RW, Kumakura K, Vitale N. 2002. Exocytosis: the chromaffin cell as a model system. Ann N Y Acad Sci 971: 178–83. [CrossRef] [PubMed] [Google Scholar]
  • Béglé A, Tryoen-Tóth P, de Barry J, Bader MF, Vitale N. 2009. ARF6 regulates the synthesis of fusogenic lipids for calcium-regulated exocytosis in neuroendocrine cells. J Biol Chem 284(8): 4836–4845. [CrossRef] [PubMed] [Google Scholar]
  • Bullen HE, Jia Y, Yamaryo-Botté Y, et al. 2016. Phosphatidic acid-mediated signaling regulates microneme secretion in toxoplasma. Cell Host Microbe 19(3): 349–360. [CrossRef] [PubMed] [Google Scholar]
  • Cardoso C, Afonso C, Bandarra NM. 2016. Dietary DHA and health: cognitive function ageing. Nutr Res Rev 29(2): 281–294. [CrossRef] [PubMed] [Google Scholar]
  • Caumont AS, Galas MC, Vitale N, Aunis D, Bader MF. 1998. Regulated exocytosis in chromaffin cells. Translocation of ARF6 stimulates a plasma membrane-associated phospholipase D. J Biol Chem 273(3): 1373–1379. [CrossRef] [PubMed] [Google Scholar]
  • Disse J, Vitale N, Bader MF, Gerke V. 2009. Phospholipase D1 is specifically required for regulated secretion of von Willebrand factor from endothelial cells. Blood 113(4): 973–980. [CrossRef] [Google Scholar]
  • Dotti CG, Sullivan CA, Banker GA. 1988. The establishment of polarity by hippocampal neurons in culture. J Neurosci 8(4): 1454–1468. [CrossRef] [PubMed] [Google Scholar]
  • Eto M, Shindou H, Shimizu T. 2014. A novel lysophosphatidic acid acyltransferase enzyme (LPAAT4) with a possible role for incorporating docosahexaenoic acid into brain glycerophospholipids. Biochem Biophys Res Commun 443(2): 718–724. [CrossRef] [Google Scholar]
  • Gasman S, Vitale N. 2017 Lipid remodelling in neuroendocrine secretion. Biol Cell 109(11): 381–390. [CrossRef] [PubMed] [Google Scholar]
  • Haast RA, Kiliaan AJ. 2015. Impact of fatty acids on brain circulation, structure and function. Prostaglandins Leukot Essent Fatty Acids 92: 3–14. [CrossRef] [PubMed] [Google Scholar]
  • He CX, Portera-Cailliau C. 2013. The trouble with spines in fragile X syndrome: density, maturity and plasticity. Neuroscience 251: 120–128. [CrossRef] [PubMed] [Google Scholar]
  • Hozumi Y, Watanabe M, Otani K, Goto K. 2009. Diacylglycerol kinase beta promotes dendritic outgrowth and spine maturation in developing hippocampal neurons. BMC Neurosci 10: 99. [CrossRef] [PubMed] [Google Scholar]
  • Humeau Y, Vitale N, Chasserot-Golaz S, et al. 2001. A role for phospholipase D1 in neurotransmitter release. Proc Natl Acad Sci USA 98(26): 15300–15305. [CrossRef] [Google Scholar]
  • Humeau Y, Gambino F, Chelly J, Vitale N. 2009. X-linked mental retardation: focus on synaptic function and plasticity. J Neurochem 109(1): 1–14. [CrossRef] [Google Scholar]
  • Iversen L, Mathiasen S, Larsen JB, Stamou D. 2015. Membrane curvature bends the laws of physics and chemistry. Nat Chem Biol 11(11): 822–825. [CrossRef] [Google Scholar]
  • Jenkins GM, Frohman MA. 2005. Phospholipase D: a lipid centric review. Cell Mol Life Sci 62(19-20): 2305–2316. [CrossRef] [PubMed] [Google Scholar]
  • Kanaho Y, Funakoshi Y, Hasegawa H. 2009. Phospholipase D signalling and its involvement in neurite outgrowth. Biochim Biophys Acta 1791(9): 898–904. [CrossRef] [PubMed] [Google Scholar]
  • Kassas N, Tanguy E, Thahouly T, et al. 2017. Comparative characterization of phosphatidic acid sensors and their localization during frustrated phagocytosis. J Biol Chem 292(10): 4266–4279. [CrossRef] [PubMed] [Google Scholar]
  • Kim K, Yang J, Zhong XP, et al. 2009. Synaptic removal of diacylglycerol by DGKzeta and PSD-95 regulates dendritic spine maintenance. EMBO J 28(8): 1170–1179. [CrossRef] [PubMed] [Google Scholar]
  • Kim K, Yang J, Kim E. 2010. Diacylglycerol kinases in the regulation of dendritic spines. J Neurochem 112(3): 577–587. [CrossRef] [PubMed] [Google Scholar]
  • Lalli G, Hall A. 2005. Ral GTPases regulate neurite branching through GAP-43 and the exocyst complex. J Cell Biol 171(5): 857–869. [CrossRef] [PubMed] [Google Scholar]
  • Lam IP, Siu FK, Chu JY, Chow BK. 2008. Multiple actions of secretin in the human body. Int Rev Cytol 265: 159–190. [CrossRef] [PubMed] [Google Scholar]
  • Lopez JA, Brennan AJ, Whisstock JC, Voskoboinik I, Trapani JA. 2012. Protecting a serial killer: pathways for perforin trafficking and self-defence ensure sequential target cell death. Trends Immunol 33(8): 406–412. [CrossRef] [PubMed] [Google Scholar]
  • Martinez-Arca S, Alberts P, Zahraoui A, et al. 2000. Role of tetanus neurotoxin insensitive vesicle-associated membrane protein (TI-VAMP) in vesicular transport mediating neurite outgrowth. J Cell Biol 149(4): 889–900. [CrossRef] [PubMed] [Google Scholar]
  • Oliveira TG, Chan RB, Tian H, et al. 2010. Phospholipase d2 ablation ameliorates Alzheimer’s disease-linked synaptic dysfunction and cognitive deficits. J Neurosci 30(49): 16419–16428. [CrossRef] [PubMed] [Google Scholar]
  • Shirai Y, Kouzuki T, Kakefuda K, et al. 2010. Essential role of neuron-enriched diacylglycerol kinase (DGK), DGKbeta in neurite spine formation, contributing to cognitive function. PLoS One 5(7): e11602. [CrossRef] [PubMed] [Google Scholar]
  • Sytnyk V, Leshchyns’ka I, Schachner M. 2017. Neural cell adhesion molecules of the immunoglobulin superfamily regulate synapse formation, maintenance, and function. trends. Neurosci 40(5): 295–308. [Google Scholar]
  • Tabet R, Moutin E, Becker JA, et al. 2016a. Fragile X mental retardation protein (FMRP) controls diacylglycerol kinase activity in neurons. Proc Natl Acad Sci USA 113(26): E3619–3628. [CrossRef] [Google Scholar]
  • Tabet R, Vitale N, Moine H. 2016b. Fragile X syndrome: are signaling lipids the missing culprits? Biochimie 130: 188–194. [CrossRef] [PubMed] [Google Scholar]
  • Tanguy E, Carmon O, Wang Q, Jeandel L, Chasserot-Golaz S, Montero-Hadjadje M, Vitale N. 2016. Lipids implicated in the journey of a secretory granule: from biogenesis to fusion. J Neurochem 137(6): 904–912. [CrossRef] [PubMed] [Google Scholar]
  • Tanguy E, Wang Q, Vitale N. 2018. Role of phospholipase D-derived phosphatidic acid in regulated exocytosis and neurological disease. Handb Exp Pharmacol. (in press). [Google Scholar]
  • Tolias KF, Couvillon AD, Cantley LC, Carpenter CL. 1998. Characterization of a Rac1-and RhoGDI-associated lipid kinase signaling complex. Mol Cell Biol 18(2): 76270. [CrossRef] [Google Scholar]
  • Vitale N. 2010. Synthesis of fusogenic lipids through activation of phospholipase D1 by GTPases and the kinase RSK2 is required for calcium-regulated exocytosis in neuroendocrine cells. Biochem Soc Trans 38(1): 167–171. [CrossRef] [PubMed] [Google Scholar]
  • Vitale N, Caumont AS, Chasserot-Golaz S, et al. 2001. Phospholipase D1: a key factor for the exocytotic machinery in neuroendocrine cells. EMBO J 20(10): 2424–2434. [CrossRef] [PubMed] [Google Scholar]
  • Vitale N, Chasserot-Golaz S, Bader MF. 2002. Regulated secretion in chromaffin cells: an essential role for ARF6-regulated phospholipase D in the late stages of exocytosis. Ann N Y Acad Sci 971: 193–200. [CrossRef] [PubMed] [Google Scholar]
  • Waselle L, Gerona RR, Vitale N, Martin TF, Bader MF, Regazzi R. 2005. Role of phosphoinositide signaling in the control of insulin exocytosis. Mol Endocrinol 19(12): 3097–3106. [CrossRef] [PubMed] [Google Scholar]
  • Williams JM, Pettitt TR, Powell W, et al. 2007. Antineutrophil cytoplasm antibody-stimulated neutrophil adhesion depends on diacylglycerol kinase-catalyzed phosphatidic acid formation. J Am Soc Nephrol 18(4): 1112–1120 [CrossRef] [Google Scholar]
  • Zeniou-Meyer M, Zabari N, Ashery U, et al. 2007. Phospholipase D1 production of phosphatidic acid at the plasma membrane promotes exocytosis of large dense-core granules at a late stage. J Biol Chem 282(30): 21746–21757. [CrossRef] [PubMed] [Google Scholar]
  • Zeniou-Meyer M, Liu Y, Béglé A, et al. 2008. The Coffin-Lowry syndrome-associated protein RSK2 is implicated in calcium-regulated exocytosis through the regulation of PLD1. Proc Natl Acad Sci USA 105(24): 8434–8439. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.