Open Access
Numéro
OCL
Volume 23, Numéro 5, September-October 2016
Numéro d'article D504
Nombre de pages 9
Section Dossier: New perspectives of European oleochemistry / Les nouvelles perspectives de l’oléochimie européenne
DOI https://doi.org/10.1051/ocl/2016021
Publié en ligne 27 juin 2016
  • Adamsen FJ, Coffelt TA. 2005. Planting date effects on flowering, seed yield, and oil content of rape and crambe cultivars. Ind. Crop. Prod. 21: 293–307. [CrossRef] [Google Scholar]
  • Allen BL, Lenssen AW, Sainju UM, Caesar-TonThat T, Evans RG. 2014. Nitrogen Use in Durum and Selected Brassicaceae Oilseeds in Two-Year Rotations. Agron. J. 106: 821–830. [CrossRef] [Google Scholar]
  • Anderson MD, Peng C, Weiss MJ. 1992. Crambe abyssinica Hochst., as a flea beetle resistant crop (Coleoptera: Chrysomelidae). J. Econ. Entomol. 85: 594–600. [CrossRef] [Google Scholar]
  • Angelini LG, Moscheni E, Colonna G, Belloni P, Bonari E. 1997. Variation in agronomic characteristics and seed oil composition of new oilseed crops in central Italy. Ind. Crop. Prod. 6: 313–323. [CrossRef] [Google Scholar]
  • Artus NN. 2006. Arsenic and cadmium phytoextraction potential of crambe compared with Indian mustard. J. Plant Nutr. 29: 667–679. [CrossRef] [Google Scholar]
  • Avato, P, D’Addabbo T, Leonetti P, Argentieri MP. 2013. Nematicidal potential of Brassicaceae. Phytochem. Rev. 12: 791–802 [CrossRef] [Google Scholar]
  • Bernardo A, Howard-Hildige R. 2003. Camelina oil as a fuel for diesel transport engine. Ind. Crop. Prod. 17: 191–197. [CrossRef] [Google Scholar]
  • Berti MT, Wilckens R, Fischer S, Solis A, Johnson B. 2011. Seeding date influence on camelina seed yield, yield components, and oil content in Chile. Ind. Crop. Prod. 34: 1258–1365. [CrossRef] [Google Scholar]
  • Berti MT, Johnson B, Gesch R, et al. 2014. Energy balance of relay- and double-cropping systems for food, feed, and fuel in the north central region, USA. In proceedings of 22nd European Biomass Conference: setting the course for a biobased economy, Hamburg (Germany), 23-26/06/2014, pp. 102–107. [Google Scholar]
  • Bohinc T, Kosir IJ, Trdan S. 2013. Glucosinolates as arsenal for defending Brassicas against cabbage flea beetle (Phyllotreta spp.) attack. Zemdirbyste 100: 199–204 [CrossRef] [Google Scholar]
  • Bondioli P, Folegatti L, Lazzeri L, Palmieri S, 1998. Native Crambe abyssinica oil and its derivates as renewable lubricants: an approach to improve its quality by chemical and biotechnological processes. Ind. Crop. Prod. 7: 231–238. [CrossRef] [Google Scholar]
  • Browne LM, Conn KL, Ayer WA, Tewari JP. 1991. The camalexins: New phytoalexins produced in the leaves of Camelina sativa (Cruciferae). Tetrahedron 47: 3909–3914. [CrossRef] [Google Scholar]
  • Budin JT, Breene WM, Putnam DH. 1995. Some compositional properties of camelina (Camelina sativa L. Crantz) seeds and oil. J. Am. Oil Chem. Soc. 72: 309–315. [Google Scholar]
  • Burke M. 2015. Fish oils from Camelina plants. Chem. Ind-London 79: 8. [Google Scholar]
  • Carlsson AS, Yilmaz JL, Green AG, Stymne S, Hofvander P. 2011. Replacing fossil oil with fresh oil – with what and for what? Eur. J. Lipid Sci. Technol. 113: 812–831. [CrossRef] [PubMed] [Google Scholar]
  • Cheesbrough TM. 1989. Changes in the enzymes for fatty acid synthesis and desaturation during acclimation of developing soybean seeds to altered growth temperature. Plant Physiol. 90: 760–764. [CrossRef] [PubMed] [Google Scholar]
  • Colombini S, Broderick GA, Galasso I, et al. 2014. Evaluation of Camelina sativa (L.) Crantz meal as an alternative protein source in ruminant rations. J. Sci. Food Agric. 94: 736–743. [CrossRef] [PubMed] [Google Scholar]
  • Costa LM, Resende O, Gonçalves DN, Rigo AD. 2013. Crambe seeds quality during storage in several conditions. Afr. J. Agric. Res. 8: 1258–1264. [Google Scholar]
  • Das N, Berhow MA, Angelino D, Jeffrey EH. 2014. Camelina sativa defatted seed meal contains both alkyl sulfinyl glucosinolates and quercetin that synergize bioactivity. J. Agr. Food Chem. 62: 8385–8391. [CrossRef] [Google Scholar]
  • De Brito DDMC, dos Santos CD, Gonçalves FV, Castro RN, de Souza, RG. 2013. Effects of nitrate supply on plant growth, nitrogen, phosphorus and potassium accumulation, and nitrate reductase activity in crambe. J. Plant Nutr. 36: 275–283. [CrossRef] [Google Scholar]
  • Dos Santos JI, Da Silva TRB, Rogério F, Santos RF, Secco D. 2013. Yield response in crambe to potassium fertilizer. Ind. Crop. Prod. 43: 297–300. [CrossRef] [Google Scholar]
  • Earle FR, Peters JE, Wolff A, White GA. 1966. Compositional differences among crambe samples and between seed components. J. Am. Oil Chem. Soc. 43: 330–333. [CrossRef] [Google Scholar]
  • Fontana F, Lazzeri L, Malaguti L, Galletti S. 1998. Agronomic characterization of some Crambe abyssinica genotypes in a locality of the Po Valley. Eur. J. Agron. 9: 117–126. [CrossRef] [Google Scholar]
  • Fowler JL. 1991. Interaction of salinity and temperature on the germination of crambe. Agron. J. 83: 169–172. [CrossRef] [Google Scholar]
  • Franca AS, Oliverira LS, Oliveira VF, Alves CCO. 2014. Potential use of Crambe abyssinica press cake as an adsorbent: batch and continuous studies. Environ. Eng. Manag. J. 13: 3025–3036. [Google Scholar]
  • Francois LE, Kleiman R. 1990. Salinity effects on vegetative growth, seed yield, and fatty acid composition of crambe. Agron. J. 82: 1110–1114. [CrossRef] [Google Scholar]
  • Fröhlich A, Rice B. 2005. Evaluation of Camelina sativa oil as a feedstock for biodiesel production. Ind. Crop. Prod. 21: 25–31. [Google Scholar]
  • Gaba S, Lescourret F, Boudsocq S, et al. 2015. Multiple cropping systems as drivers for providing multiple ecosystem services: from concepts to design. Agric. Sustain. Dev. 35: 607–623. [CrossRef] [Google Scholar]
  • Gesch RW, Archer DW. 2013. Double-cropping with winter camelina in the northern Corn Belt to produce fuel and food. Ind. Crop. Prod. 44: 718–725. [Google Scholar]
  • Gesch RW, Cermak SC. 2011. Sowing date and tillage effects on fall-seeded camelina in the Northern Corn Belt. Agron. J. 103: 980–987. [CrossRef] [Google Scholar]
  • Gesch RW, Johnson JMF. 2015. Water use in camelina-soybean dual cropping systems. Agron. J. 107: 1098–1104. [CrossRef] [Google Scholar]
  • Gesch RW, Archer DW, Berti MT. 2014. Dual cropping winter camelina with soybean in the northern corn belt. Agron. J. 106: 1735–1745. [Google Scholar]
  • Gonçalves AC Jr., Rubio F, Meneghel AP, Coelho GF, Dragunski DC, Strey L. 2013. The use of Crambe abyssinica seeds as adsorbent in the removal of metals from waters. R. Bras. Eng. Agríc. Ambiental. 17: 306–311. [CrossRef] [Google Scholar]
  • Gugel RK, Falk KC. 2006. Agronomic and seed quality evaluation of Camelina sativa in western Canada. Can. J. Plant Sci. 86: 1047–1058. [CrossRef] [Google Scholar]
  • Hunsaker DJ, French AN, Clarke TR, El-Shikha DM. 2011. Water use, crop coefficients, and irrigation management criteria for camelina production in arid regions. Irrigation Sci. 29: 27–43. [CrossRef] [Google Scholar]
  • Johnson JMF, Gesch RW. 2013. Calendula and camelina response to nitrogen fertility. Ind. Crop. Prod. 43: 684–691. [CrossRef] [Google Scholar]
  • Kirkegaard J, Christen O, Krupinsky J, Layzell D. 2008. Break crop benefits in temperate wheat production. Field Crop. Res. 107: 185–195. [Google Scholar]
  • Kmec P, Weiss MJ, Milbrath LR, et al. 1998. Growth analysis of crambe. Crop Sci. 38: 108–112. [CrossRef] [Google Scholar]
  • Knights EG. 2002. Crambe: A North Dakota case study. a report for the rural industries research and development corporation, 25 p. [Google Scholar]
  • Knorzer KH. 1978. Evolution and spread of Gold of Pleasure (Camelina sativa S.L.). Ber. Dtsch. Bot. Ges. 91: 187–195. [Google Scholar]
  • Krupinsky JM, Tanaka DL, Merrill SD, Liebig MA, Hanson JD. 2006. Crop sequence effects of 10 crops in the northern Great Plains. Agr. Syst. 88: 227–254. [CrossRef] [Google Scholar]
  • Laghetti G, Piergiovanni AR, Perrino P. 1995. Yield and oil quality in selected lines of Crambe abyssinica Hochst. ex R.E. Fries and C. hispanica L. grown in Italy. Ind. Crop. Prod. 4: 203–212. [CrossRef] [Google Scholar]
  • Lange R, Schumann W, Petrzika M, Busch H, Marquard R. 1995. Glucosinolates in linseed dodder. Fat Sci. Technol. 97: 146–152. [Google Scholar]
  • Lazzeri L. Crambe (Crambe abyssinica Hochst ex R.E. Fries). In: Mosca G, ed. Oleaginose non alimentari. Bologna (Italy): Edagricole, 1998, pp. 95–101. [Google Scholar]
  • Lenssen AW, Iversen WM, Sainju UM, et al. 2012. Yield, pests and water use of durum and selected crucifer oilseeds in two-year rotations. Agron. J. 104: 1295–1304. [CrossRef] [Google Scholar]
  • Leppik EE, White GA. 1975. Preliminary assessment of crambe germplasm resources. Euphytica 24: 681–689. [CrossRef] [Google Scholar]
  • Lessman KJ. Crambe: a new industrial crop in limbo. In: Janick J, Simon JE, eds. Advances in new crops Portland (USA): Timber Press, 1990, pp. 217–222. [Google Scholar]
  • Li X, Mupondwa E. 2014. Life cycle assessment of camelina oil derived biodiesel and jet fuel in the Canadian Prairies. Sci. Tot. Environ. 481: 17–26. [CrossRef] [Google Scholar]
  • Lithourgidis AS, Dordas CA, Damalas CA, Vlachostergios DN. 2011. Annual intercrops: an alternative pathway for sustainable agriculture. Aust. J. Crop. Sci. 5: 396–410. [Google Scholar]
  • Lonov M, Yuldasheva N, Ulchenko N, Glushenkova AI, Heuer B. 2013. Growth, development and yield of Crambe abyssinica under saline irrigation in the greenhouse. J. Agron. Crop Sci. 199: 331–339. [CrossRef] [Google Scholar]
  • Lovett JV, Jackson HF. 1980. Allelopathic activity of Camelina sativa (L.) Crantz in relation to its phyllosphere bacteria. New Phytol. 86: 273–277. [CrossRef] [Google Scholar]
  • Luehs W, Friedt W. Non-food uses of vegetable oils and fatty acids. In: Murphy DJ, ed. Designer oil crops, breeding, processing and biotechnology, Weinheim (Germany): VCH Verlagsgesellschaft, 1993, pp. 73–130. [Google Scholar]
  • Martinelli T, Galasso I. 2011. Phenological growth stages of Camelina sativa according to the extended BBCH scale. Ann. Appl. Biol. 158: 87–94. [CrossRef] [Google Scholar]
  • Martínez-Ballesta MC, Moreno DA, Carvajal M. 2013. The physiological importance of glucosinolates on plant response to abiotic stress in Brassica. Int. J. Mol. Sci. 14: 11607–11625. [Google Scholar]
  • Matthaus B, Zubr J. 2000. Variability of specific components in Camelina sativa oilseed cakes. Ind. Crop. Prod. 12: 9–18. [Google Scholar]
  • Meijer WJM, Mathijssen EWJM. 1996. Analysis of crop performance in research on inulin, fibre and oilseed crops. Ind. Crop. Prod. 5: 253–264. [CrossRef] [Google Scholar]
  • Meijer WJM, Mathijssen EWJM, Kreuzer AD. 1999. Low pod numbers and inefficient use of radiation are major constraints to high productivity in Crambe crops. Ind. Crop. Prod. 19: 221–233. [CrossRef] [Google Scholar]
  • Merrien A, Carre P, Quinsac A. 2012. The different oleaginous resources potentially in aid of green chemistry development. OCL 19: 6–9. [CrossRef] [EDP Sciences] [Google Scholar]
  • Metzger JO. 2009. Fats and oils as renewable feedstock for chemistry. Eur. J. Lipid Sci. Technol. 111: 865–876. [CrossRef] [Google Scholar]
  • Monteiro de Espinosa L, Meier MAR. 2011. Plant oils: The perfect renewable resource for polymer science?! Eur. Polym. J. 47: 837–852. [CrossRef] [Google Scholar]
  • Natelson RH, Wang WC, Roberts WL, Zering KD. 2015. Technoeconomic analysis of jet fuel production from hydrolis, decarboxylation, and reforming of camelina oil. Biomass Bioenerg. 75: 23–34. [CrossRef] [Google Scholar]
  • Paulose B, Kandasamy S, Dhankher OP. 2010. Expression profiling of Crambe abyssinica under arsenate stress identifies genes and gene networks involved in arsenic metabolism and detoxification. BMC Plant Biol. 10: 108. [CrossRef] [PubMed] [Google Scholar]
  • Pavlista AD, Hergert GW, Margheim JM, Isbell TA. 2016. Growth of spring camelina (Camelina sativa) under deficit irrigation in Western Nebraska. Ind. Crop. Prod. 83: 118–123. [CrossRef] [Google Scholar]
  • Pecchia P, Russo R, Brambilla I, Reggiani R, Mapelli S. 2014. Biochemical seed traits of Camelina sativa – an emerging oilseed crop for biofuel: environmental and genetic influences. J. Crop. Improv. 28: 465–483. [CrossRef] [Google Scholar]
  • Pedras MSC, Khan AQ, Taylor JJ. 1998. The phytoalexin camalexinis not metabolized by Phoma lingam, Alternaria brassicae, or phytopathogenic bacteria. Plant Sci. 139: 1–8. [CrossRef] [Google Scholar]
  • Putnam DH, Budin JT, Field LA, Breene WM. Camelina: a promising low-input oilseed. In: Janick J, Simon JE, eds. New crops. New York (USA): Wiley, 1993, pp. 314–322. [Google Scholar]
  • Rodríguez-Rodríguez MF, Sánchez-García A, Salas JJ, Garcés R, Martìnez-Force E. 2013. Characterization of the morphological changes and fatty acids profile of developing Camelina sativa seeds. Ind. Crop. Prod. 50: 673–679. [CrossRef] [Google Scholar]
  • Rogério F, Benetoli da Silva TR, Dos Santos JI, Poletine JP. 2013. Phosphorus fertilization influences grain yield and oil content in crambe. Ind. Crop. Prod. 41: 266–268. [CrossRef] [Google Scholar]
  • Russo R, Reggiani R. 2012. Antinutritive compounds in twelve Camelina sativa genotypes. Am. J. Plant Sci. 3: 1408–1412. [CrossRef] [Google Scholar]
  • Russo R, Galasso I, Reggiani R. 2014. Variability in glucosinolate content among Camelina species. Am. J. Plant. Sci. 5: 294–298. [CrossRef] [Google Scholar]
  • Sapone A, Affatato A, Canistro D, et al. 2007. Cruciferous vegetables and lung cancer. Mutat. Ref-Rev. Mutat. 635: 146–148. [CrossRef] [Google Scholar]
  • Schulte LR, Ballard T, Samarakoon T, Yao L, Vadlani P, Staggenborg S, Rezac M. 2013. Increasing growing temperature reduces content of polyunsaturated fatty acids in four oilseed crops. Ind. Crop. Prod. 51: 212–219. [CrossRef] [Google Scholar]
  • Solis A, Vidal I, Paulino L, Johnson BL, Berti MT. 2013. Camelina seed yields response to nitrogen, sulphur and phosphorous fertilizer in South Central Chile. Ind. Crop. Prod. 44: 132–138. [CrossRef] [Google Scholar]
  • Soto-Cerda BJ, Duguid S, Booker H, Rowland G, Diederichsen A, Cloutier S. 2014. Association mapping of seed quality traits using the Canadian Flax (Linum usitatissimum L.) core collection. Theor. Appl. Genet. 127: 881–896. [CrossRef] [PubMed] [Google Scholar]
  • Souza GSF, Vitorino HS, Fioreze ACCL, Pereira MRR, Martins D. 2014. Selectivity of herbicides in crambe crop. Ciências Agrárias Londrina 35: 161–168. [Google Scholar]
  • Toncea I, Necseriu D, Prisecaru T, Balint LN, Ghilvacs MI, Popa M. 2013. The seed’s and oil composition of Camelia – first Romanian cultivar of camelina (Camelina sativa, L. Crantz). Rom. Biotech. Lett. 18: 8594–8602. [Google Scholar]
  • Urbaniak SD, Caldwell CD, Zheljazkov VD, Lada R, Luan L. 2008. The effect of cultivar and applied nitrogen on the performance of Camelina sativa L. in the Maritime Provinces of Canada. Can. J. Plant. Sci. 88: 111–119. [CrossRef] [Google Scholar]
  • Vollmann J, Eynck C. 2015. Camelina as a sustainable oilseed crop: Contributions of plant breeding and genetic engineering. Biotechnol. J. 10: 525–535. [CrossRef] [PubMed] [Google Scholar]
  • Vollmann J, Ruckenbauer P. 1993. Agronomic performance and oil quality of crambe as affected by genotype and environment. Die Bodenkultur 44: 335–343. [Google Scholar]
  • Vollmann J, Moritz T, Kargl C, Baumgartner S, Wagentristl H. 2007. Agronomic evaluation of camelina genotypes selected for seed quality characteristics. Ind. Crop. Prod. 26: 270–277. [CrossRef] [Google Scholar]
  • Walker K, Non-food uses. In Gunstone FD, ed. Rapeseed and Canola oil: production, processing, properties and uses, Oxford (UK): Blackwell Publishing, 2004, pp. 154–185. [Google Scholar]
  • Wang YP, Tang JS, Chu CQ, Tian J. 2000. A preliminary study on the introduction and cultivation of Crambe abyssinica in China, an oil plant for industrial uses. Ind. Crop. Prod. 12: 47–52. [CrossRef] [Google Scholar]
  • Wazilewski WT, Bariccatti RA, Martins GI, Secco D, Melegari de Souza SN, Chaves LI. 2013. Study of the methyl crambe (Crambe abyssinica Hochst) and soybean biodiesel oxidative stability. Ind. Crop. Prod. 43: 207–212. [CrossRef] [Google Scholar]
  • Wysocki DJ, Chastain TG, Schillinger WF, Guy SO, Karow RS. 2013. Camelina: seed yield response to applied nitrogen and sulphur. Field Crop. Res. 145: 60–66. [CrossRef] [Google Scholar]
  • Ye CL, Anderson DM, Lall SP. 2016. The effects of camelina oil and solvent extracted camelina meal on the growth, carcass composition and hindgut histology of Atlantic salmon (Salmo salar) parr in freshwater. Aquaculture 450: 397–404. [CrossRef] [Google Scholar]
  • Zanetti F, Vamerali T, Bona S, Mosca G. 2006. Can we cultivate erucic acid in Southern Europe? It. J. Agron. 1: 3–10. [CrossRef] [Google Scholar]
  • Zanetti F, Vamerali T, Mosca G. 2009. Yield and oil variability in modern varieties of high-erucic winter oilseed rape (Brassica napus L. var. oleifera) and Ethiopian mustard (Brassica carinata A. Braun) under reduced agricultural inputs. Ind. Crop. Prod. 30: 265–270. [CrossRef] [Google Scholar]
  • Zanetti F, Monti A, Berti MT. 2013. Challenges and opportunities for new industrial oilseed crops in EU-27: A review. Ind. Crop. Prod. 50: 580–595. [CrossRef] [Google Scholar]
  • Zubr J. 1997. Oil-seed crop: Camelina sativa. Ind. Crop. Prod. 6: 113–119. [Google Scholar]
  • Zubr J. 2003. Qualitative variation of Camelina sativa seed from different locations. Ind. Crop. Prod. 17: 161–169. [CrossRef] [Google Scholar]
  • Zubr J. 2010. Carbohydrates, vitamins, and minerals of Camelina sativa seed. Nutr. Food Sci. 40: 523–531. [CrossRef] [Google Scholar]
  • Zubr J, Matthaus B. 2002. Effects of growth conditions on fatty acids and tocopherols in Camelina sativa oil. Ind. Crop. Prod. 15: 155–162. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.