Open Access
Numéro
OCL
Volume 23, Numéro 1, January-February 2016
Numéro d'article D117
Nombre de pages 8
Section Dossier: Lipids and Brain / Lipides et cerveau
DOI https://doi.org/10.1051/ocl/2015068
Publié en ligne 26 janvier 2016
  • Akhmanova M, Osidak E, Domogatsky S, Rodin S, Domogatskaya A. 2015. Physical, Spatial, and Molecular Aspects of Extracellular Matrix of In Vivo Niches and Artificial Scaffolds Relevant to Stem Cells Research. Stem Cells Int. Article ID 167025. [Google Scholar]
  • Altmann B, Welle A, Giselbrecht S, Truckenmuller R, Gottwald E. 2009. The famous versus the inconvenient – or the dawn and the rise of 3D-culture systems. World J. Stem cells 1: 43–48. [CrossRef] [PubMed] [Google Scholar]
  • Andersen T, Auk-Emblem P, Dornish M. 2015. 3D Cell Culture in Alginate Hydrogels. Microarrays. 2: 133–161. [CrossRef] [Google Scholar]
  • Aurand ER, Lampe KJ, Bjugstad KB. 2012a. Defining and Designing Polymers and Hydrogels for Neural Tissue Engineering. Neurosci. Res. 3: 199–213. [CrossRef] [Google Scholar]
  • Aurand ER, Wagner J, Lanning C, Bjugstad KB. 2012b. Building Biocompatible Hydrogels for Tissue Engineering of the Brain and Spinal Cord. J. Funct. Biomat. 4: 839–863. [CrossRef] [Google Scholar]
  • Banker G, Goslin K 1998, Culturing nerve cells, 2 ed. Cambridge: The MIT Press. [Google Scholar]
  • Baroli B. 2007. Hydrogels for tissue engineering and delivery of tissue-inducing substances. J. Pharm. Sci. 9: 2197–2223. [CrossRef] [Google Scholar]
  • Blau AW, Ziegler CM. 2001. Prototype of a novel autonomous perfusion chamber for long-term culturing and in situ investigation of various cell types. J. Biochem. Biophys. Methods 1: 15–27. [CrossRef] [Google Scholar]
  • Blau A, Neumann T, Ziegler C, Benfenati F. 2009. Replica-molded poly(dimethylsiloxane) culture vessel lids attenuate osmotic drift in long-term cell culturing. J. Biosci. 1: 59–69. [CrossRef] [Google Scholar]
  • Breslin S, O’Driscoll L. 2013. Three-dimensional cell culture: the missing link in drug discovery. Drug Discov. Today 5–6: 240–249. [CrossRef] [PubMed] [Google Scholar]
  • Buwalda SJ, Boere KWM, Dijkstra PJ, Feijen J, Vermonden T, Hennink WE. 2014. Hydrogels in a historical perspective: From simple networks to smart materials. J. Control Release 190: 254–273. [CrossRef] [PubMed] [Google Scholar]
  • Caló E, Khutoryanskiy VV. 2015. Biomedical applications of hydrogels: A review of patents and commercial products. Eur. Polym. J. 65: 252–267. [CrossRef] [Google Scholar]
  • Carballo-Molina OA, Velasco I. 2015. Hydrogels as scaffolds and delivery systems to enhance axonal regeneration after injuries. Front. Cell. Neurosci.: 13. [Google Scholar]
  • Carletti E, Motta A, Migliaresi C. Scaffolds for tissue engineering and 3D cell culture. In: Haycock JW, ed. 3D Cell Culture Humana Press, 2011. [Google Scholar]
  • Comley J. 2010. 2D Cell Culture: easier said than done! Summer 10. Drug Discovery World Summer 2010 (ddw-online.com) pp. 24–41. [Google Scholar]
  • Dhaliwal A. 2012. Three dimensional cell culture: A review. Materials and Methods 2: 162. [CrossRef] [Google Scholar]
  • Dou X-Q, Yang X-M, Li P, Zhang Z-G, Schonherr H, Zhang D, Feng C-L. 2012. Novel pH responsive hydrogels for controlled cell adhesion and triggered surface detachment. Soft Matter 37: 9539–9544. [CrossRef] [Google Scholar]
  • Frantz C, Stewart KM, Weaver VM. 2010. The extracellular matrix at a glance. J. Cell Sci. 24: 4195–4200. [Google Scholar]
  • Frega M, Tedesco M, Massobrio P, Pesce M, Martinoia S. 2014. Network dynamics of 3D engineered neuronal cultures: a new experimental model for in vitro electrophysiology. Sci. Rep. 5489. [Google Scholar]
  • Geckil H, Xu F, Zhang X, Moon S, Demirci U. 2010. Engineering hydrogels as extracellular matrix mimics. Nanomedicine 3: 469–484. [CrossRef] [Google Scholar]
  • Greiner AM, Richter B, Bastmeyer M. 2012. Micro-Engineered 3D Scaffolds for Cell Culture Studies. Macromol. Biosci. 10: 1301–1314. [CrossRef] [Google Scholar]
  • Haycock JW. 3D cell culture: A review of current approaches and techniques. T 3D Cell Culture, 2010. [Google Scholar]
  • Heo YS, Cabrera LM, Song JW, Futai N, Tung YC, Smith GD, Takayama S. 2007. Characterization and resolution of evaporation-mediated osmolality shifts that constrain microfluidic cell culture in poly(dimethylsiloxane) devices. Anal. Chem. 3: 1126–1134. [CrossRef] [Google Scholar]
  • Huh D, Hamilton GA, Ingber DE. 2011. From 3D cell culture to organs-on-chips. Trends Cell Biol. 12: 745–754. [CrossRef] [Google Scholar]
  • Hunt JA, Chen R, van Veen T, Bryan N. 2014. Hydrogels for tissue engineering and regenerative medicine. J. Mater. Chem. B 33: 5319–5338. [CrossRef] [Google Scholar]
  • Kaipparettu BA, Kuiatse I, Chan BT-Y, Kaipparettu MB, Lee AV, Oesterreich S. 2008. Novel egg white-based 3-D cell culture system. BioTechniques 2: 165–168. [CrossRef] [Google Scholar]
  • Kim B-S, Park I-K, Hoshiba T, Jiang H-L, Choi Y-J, Akaike T, Cho C-S. 2011. Design of artificial extracellular matrices for tissue engineering. Prog. Polym. Sci. 36: 238–268. [CrossRef] [Google Scholar]
  • Kim R, Joo S, Jung H, Hong N, Nam Y. 2014. Recent trends in microelectrode array technology for in vitro neural interface platform. Biomed. Eng. Lett. 2: 129–141. [Google Scholar]
  • Kopecek J. 2002. Polymer chemistry: swell gels. Nature 6887: 388–389, 391. [CrossRef] [PubMed] [Google Scholar]
  • Leal-Egaña A, Díaz-Cuenca A, Boccaccini AR. 2013. Tuning of Cell–Biomaterial Anchorage for Tissue Regeneration. Adv. Mater. 29: 4049–4057. [CrossRef] [Google Scholar]
  • Lei Y, Schaffer DV. 2013. A fully defined and scalable 3D culture system for human pluripotent stem cell expansion and differentiation. Proc. Natl. Acad. Sci. USA 52: E5039–E5048. [CrossRef] [Google Scholar]
  • Lepezuniga JL, Zigler JS, Gery I. 1987. Toxicity of Light-Exposed HEPES Media. J. Immunol. Methods 1: 145–145. [CrossRef] [Google Scholar]
  • Liechty WB, Kryscio DR, Slaughter BV, Peppas NA. 2010. Polymers for drug delivery systems. Ann. Rev. Chem. Biomol. Eng. 149–173. [CrossRef] [Google Scholar]
  • McMurtrey RJ. 2015. Novel advancements in three-dimensional neural tissue engineering and regenerative medicine. Neural Regener. Res. 3: 352–354. [CrossRef] [Google Scholar]
  • Mecham RP. 2012. Overview of extracellular matrix. Curr. Protoc. Cell Biol. John Wiley & Sons, Inc.. [Google Scholar]
  • Mouw JK, Ou G, Weaver VM. 2014. Extracellular matrix assembly: a multiscale deconstruction. Nat. Rev. Mol. Cell Biol. 12: 771–785. [Google Scholar]
  • Ott HC, Matthiesen TS, Goh S-K, Black LD, Kren SM, Netoff TI, Taylor DA. 2008. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat. Med. 14: 213–221. [CrossRef] [PubMed] [Google Scholar]
  • Pek YS, WanAndrew CA, Shekaran A, Zhuo L, Ying JY. 2008. A thixotropic nanocomposite gel for three-dimensional cell culture. Nat. Nanotechnol. 11: 671–675. [CrossRef] [Google Scholar]
  • Saalfrank D, Konduri AK, Latifi S, Habibey R, Golabchi A, Martiniuc AV, Knoll A, Ingebrandt S, Blau A. 2015. Incubator-independent cell-culture perfusion platform for continuous long-term microelectrode array electrophysiology and time-lapse imaging. R. Soc. Open Sci. 2: 150031. [CrossRef] [PubMed] [Google Scholar]
  • Thiele J, Ma Y, Bruekers SMC, Ma S, Huck WTS. 2014. 25th anniversary article: designer hydrogels for cell cultures: A materials selection guide. Adv. Mater. 1: 125–148. [CrossRef] [Google Scholar]
  • Tibbitt MW, Anseth KS. 2009. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol. Bioeng. 4: 655–663. [CrossRef] [Google Scholar]
  • Yarmush ML, King KR. 2009. Living-cell microarrays. Ann. Rev. Biomed. Eng.: 235–257. [CrossRef] [Google Scholar]
  • Yurchenco PD. 2011. Basement membranes: Cell scaffoldings and signaling platforms. Cold Spring Harb. Perspect. Biol. 2. [Google Scholar]
  • Zhao X, Zhang S. 2006. Molecular designer self-assembling peptides. Chem. Soc. Rev. 11: 1105–1110. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.