Open Access
Numéro
OCL
Volume 23, Numéro 1, January-February 2016
Numéro d'article D104
Nombre de pages 6
Section Dossier: Lipids and Brain / Lipides et cerveau
DOI https://doi.org/10.1051/ocl/2015062
Publié en ligne 18 décembre 2015
  • Ariel A, Serhan CN. 2007. Resolvins and protectins in the termination program of acute inflammation. Trends Immunol 28: 176–183. [CrossRef] [PubMed] [Google Scholar]
  • Arita M, Bianchini F, Aliberti J, et al. 2005. Stereochemical assignment, antiinflammatory properties, and receptor for the omega-3 lipid mediator resolvin E1. J. Exp. Med. 201: 713–722. [CrossRef] [PubMed] [Google Scholar]
  • Arita M, Ohira T, Sun YP, Elangovan S, Chiang N, Serhan CN. 2007. Resolvin E1 selectively interacts with leukotriene B4 receptor BLT1 and ChemR23 to regulate inflammation. J. Immunol. 178: 3912–3917. [CrossRef] [PubMed] [Google Scholar]
  • Bannenberg G, Serhan CN. 2010. Specialized pro-resolving lipid mediators in the inflammatory response: An update. Biochim. Biophys. Acta 1801: 1260–1273. [CrossRef] [PubMed] [Google Scholar]
  • Bartel DP. 2009. MicroRNAs: target recognition and regulatory functions. Cell 136: 215–233. [CrossRef] [PubMed] [Google Scholar]
  • Bazinet RP, Laye S. 2014. Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat. Rev. Neurosci. 15: 771–785. [CrossRef] [PubMed] [Google Scholar]
  • Biber K, Neumann H, Inoue K, Boddeke HW. 2007. Neuronal ’On’ and ’Off’ signals control microglia. Trends Neurosci. 30: 596–602. [CrossRef] [PubMed] [Google Scholar]
  • Blais V, Rivest S. 2003. [Role of the innate immune response in the brain]. Med. Sci. (Paris) 19: 981–987. [Google Scholar]
  • Calder PC. 2001. omega 3 polyunsaturated fatty acids, inflammation and immunity. World Rev. Nutr. Diet. 88: 109–116. [CrossRef] [Google Scholar]
  • Calder PC. 2010. Omega-3 fatty acids and inflammatory processes. Nutrients 2: 355–374. [CrossRef] [PubMed] [Google Scholar]
  • Calder PC. 2013. n-3 fatty acids, inflammation and immunity: new mechanisms to explain old actions. Proc. Nutr. Soc. 72: 326-36. [CrossRef] [PubMed] [Google Scholar]
  • Carson MJ, Thrash JC, Walter B. 2006. The cellular response in neuroinflammation: The role of leukocytes, microglia and astrocytes in neuronal death and survival. Clin. Neurosci. Res. 6: 237–245. [CrossRef] [PubMed] [Google Scholar]
  • Ceppi M, Pereira PM, Dunand-Sauthier I, et al. 2009. MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells. Proc. Natl. Acad. Sci. USA 106: 2735–2740. [CrossRef] [Google Scholar]
  • Chen J, Shetty S, Zhang P, et al. 2014. Aspirin-triggered resolvin D1 down-regulates inflammatory responses and protects against endotoxin-induced acute kidney injury. Toxicol. Appl. Pharmacol. 277: 118–123. [CrossRef] [PubMed] [Google Scholar]
  • Chiang N, Fredman G, Backhed F, et al. 2012. Infection regulates pro-resolving mediators that lower antibiotic requirements. Nature 484: 524–528. [CrossRef] [PubMed] [Google Scholar]
  • Claria J, Gonzalez-Periz A, Lopez-Vicario C, Rius B, Titos E. 2011. New insights into the role of macrophages in adipose tissue inflammation and Fatty liver disease: modulation by endogenous omega-3 Fatty Acid-derived lipid mediators. Front Immunol. 2: 49. [CrossRef] [PubMed] [Google Scholar]
  • Claria J, Dalli J, Yacoubian S, Gao F, Serhan CN. 2012. Resolvin D1 and resolvin D2 govern local inflammatory tone in obese fat. J. Immunol. 189: 2597-605. [CrossRef] [PubMed] [Google Scholar]
  • Cunningham C, Sanderson DJ. 2008. Malaise in the water maze: untangling the effects of LPS and IL-1beta on learning and memory. Brain. Behav. Immun. 22: 1117–1127. [CrossRef] [PubMed] [Google Scholar]
  • Davalos D, Grutzendler J, Yang G, et al. 2005. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 8: 752–758. [CrossRef] [PubMed] [Google Scholar]
  • De Smedt-Peyrusse V, Sargueil F, Moranis A, Harizi H, Mongrand S, Laye S. 2008. Docosahexaenoic acid prevents lipopolysaccharide-induced cytokine production in microglial cells by inhibiting lipopolysaccharide receptor presentation but not its membrane subdomain localization. J. Neurochem. 105: 296–307. [CrossRef] [PubMed] [Google Scholar]
  • Delpech JC, Madore C, Joffre C, et al. 2015a. Transgenic increase in n-3/n-6 fatty acid ratio protects against cognitive deficits induced by an immune challenge through decrease of neuroinflammation. Neuropsychopharmacology 40: 525–536. [CrossRef] [PubMed] [Google Scholar]
  • Delpech JC, Madore C, Nadjar A, Joffre C, Wohleb ES, Laye S. 2015b. Microglia in neuronal plasticity: Influence of stress. Neuropharmacology 96: 19-28. [CrossRef] [PubMed] [Google Scholar]
  • Delpech JC, Thomazeau A, Madore C, et al. 2015c. Dietary n-3 PUFAs Deficiency Increases Vulnerability to Inflammation-Induced Spatial Memory Impairment. Neuropsychopharmacology. [Google Scholar]
  • Dona M, Fredman G, Schwab JM, et al. 2008. Resolvin E1, an EPA-derived mediator in whole blood, selectively counterregulates leukocytes and platelets. Blood 112: 848–855. [CrossRef] [PubMed] [Google Scholar]
  • El Kebir D, Gjorstrup P, Filep JG. 2012. Resolvin E1 promotes phagocytosis-induced neutrophil apoptosis and accelerates resolution of pulmonary inflammation. Proc. Natl. Acad. Sci. USA 109: 14983–14988. [CrossRef] [Google Scholar]
  • Faraoni I, Antonetti FR, Cardone J, Bonmassar E. 2009. miR-155 gene: a typical multifunctional microRNA. Biochim. Biophys. Acta 1792: 497–505. [CrossRef] [PubMed] [Google Scholar]
  • Fiala M, Halder RC, Sagong B, et al. 2015. omega-3 Supplementation increases amyloid-beta phagocytosis and resolvin D1 in patients with minor cognitive impairment. Faseb J. 29: 2681–2689. [CrossRef] [PubMed] [Google Scholar]
  • Fredman G, Serhan CN. 2011. Specialized proresolving mediator targets for RvE1 and RvD1 in peripheral blood and mechanisms of resolution. Biochem. J. 437: 185–197. [CrossRef] [PubMed] [Google Scholar]
  • Garden GA, Moller T. 2006. Microglia biology in health and disease. J. Neuroimmune Pharmacol. 1: 127–137. [CrossRef] [PubMed] [Google Scholar]
  • Hanisch UK, Kettenmann H. 2007. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat. Neurosci. 10: 1387–1394. [CrossRef] [PubMed] [Google Scholar]
  • Harrison JL, Rowe RK, Ellis TW, et al. 2015. Resolvins AT-D1 and E1 differentially impact functional outcome, post-traumatic sleep, and microglial activation following diffuse brain injury in the mouse. Brain. Behav. Immun. 47: 131–140. [CrossRef] [PubMed] [Google Scholar]
  • Headland SE, Norling LV. 2015. The resolution of inflammation: Principles and challenges. Semin. Immunol. 27: 149–160. [CrossRef] [PubMed] [Google Scholar]
  • Herrera BS, Hasturk H, Kantarci A, et al. 2015. Impact of resolvin E1 on murine neutrophil phagocytosis in type 2 diabetes. Infect. Immun. 83: 792–801. [CrossRef] [PubMed] [Google Scholar]
  • Ji RR, Xu ZZ, Strichartz G, Serhan CN. 2011. Emerging roles of resolvins in the resolution of inflammation and pain. Trends Neurosci. 34: 599–609. [CrossRef] [PubMed] [Google Scholar]
  • Krishnamoorthy S, Recchiuti A, Chiang N, et al. 2010. Resolvin D1 binds human phagocytes with evidence for proresolving receptors. Proc. Natl. Acad. Sci. USA 107: 1660–1665. [CrossRef] [Google Scholar]
  • Labrousse VF, Nadjar A, Joffre C, et al. 2012. Short-term long chain omega3 diet protects from neuroinflammatory processes and memory impairment in aged mice. PLoS One 7: e36861. [CrossRef] [PubMed] [Google Scholar]
  • Lafourcade M, Larrieu T, Mato S, et al. 2011. Nutritional omega-3 deficiency abolishes endocannabinoid-mediated neuronal functions. Nat. Neurosci. 14: 345–350. [CrossRef] [PubMed] [Google Scholar]
  • Larrieu T, Madore C, Joffre C, Laye S. 2012. Nutritional n-3 polyunsaturated fatty acids deficiency alters cannabinoid receptor signaling pathway in the brain and associated anxiety-like behavior in mice. J. Physiol. Biochem. 68: 671–681. [CrossRef] [PubMed] [Google Scholar]
  • Laye S. 2010. Polyunsaturated fatty acids, neuroinflammation and well being. Prostaglandins Leukot Essent Fatty Acids 82: 295–303. [CrossRef] [PubMed] [Google Scholar]
  • Lee HN, Surh YJ. 2012. Therapeutic potential of resolvins in the prevention and treatment of inflammatory disorders. Biochem. Pharmacol. 84: 1340–1350. [CrossRef] [PubMed] [Google Scholar]
  • Li L, Wu Y, Wang Y, et al. 2014. Resolvin D1 promotes the interleukin-4-induced alternative activation in BV-2 microglial cells. J. Neuroinflammation 11: 72. [CrossRef] [PubMed] [Google Scholar]
  • Luchtman DW, Song C. 2013. Cognitive enhancement by omega-3 fatty acids from child-hood to old age: findings from animal and clinical studies. Neuropharmacology 64: 550–565. [CrossRef] [PubMed] [Google Scholar]
  • Madore C, Joffre C, Delpech JC, et al. 2013. Early morphofunctional plasticity of microglia in response to acute lipopolysaccharide. Brain. Behav. Immun. 34: 151–158. [CrossRef] [PubMed] [Google Scholar]
  • Madore C, Nadjar A, Delpech JC, et al. 2014. Nutritional n-3 PUFAs deficiency during perinatal periods alters brain innate immune system and neuronal plasticity-associated genes. Brain. Behav. Immun. 41: 22–31. [CrossRef] [PubMed] [Google Scholar]
  • Mingam R, Moranis A, Bluthe RM, et al. 2008. Uncoupling of interleukin-6 from its signalling pathway by dietary n-3-polyunsaturated fatty acid deprivation alters sickness behaviour in mice. Eur. J. Neurosci. 28: 1877–1886. [CrossRef] [PubMed] [Google Scholar]
  • Mizwicki MT, Liu G, Fiala M, et al. 2013. 1alpha,25-dihydroxyvitamin D3 and resolvin D1 retune the balance between amyloid-beta phagocytosis and inflammation in Alzheimer’s disease patients. J. Alzheimers Dis. 34: 155–170. [PubMed] [Google Scholar]
  • Moranis A, Delpech JC, De Smedt-Peyrusse V, et al. 2012. Long term adequate n-3 polyunsaturated fatty acid diet protects from depressive-like behavior but not from working memory disruption and brain cytokine expression in aged mice. Brain. Behav. Immun. 26: 721–731. [CrossRef] [PubMed] [Google Scholar]
  • Navarro-Xavier RA, Newson J, Silveira VL, Farrow SN, Gilroy DW, Bystrom J. 2010. A new strategy for the identification of novel molecules with targeted proresolution of inflammation properties. J. Immunol. 184: 1516–1525. [CrossRef] [PubMed] [Google Scholar]
  • Nimmerjahn A, Kirchhoff F, Helmchen F. 2005. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308: 1314–1318. [CrossRef] [PubMed] [Google Scholar]
  • Norheim F, Gjelstad IM, Hjorth M, et al. 2012. Molecular nutrition research: the modern way of performing nutritional science. Nutrients 4: 1898–1944. [CrossRef] [PubMed] [Google Scholar]
  • O’Connell RM, Taganov DK, Boldin MP, Cheng G, Baltimore D. 2007. MicroRNA-155 is induced during the macrophage inflammatory response. Proc. Natl. Acad. Sci. USA 104: 1604–1609. [CrossRef] [Google Scholar]
  • O’Neill LA, Sheedy FJ, McCoy CE. 2011. MicroRNAs: the fine-tuners of Toll-like receptor signalling. Nat. Rev. Immunol. 11: 163–175. [CrossRef] [PubMed] [Google Scholar]
  • Oh SF, Pillai PS, Recchiuti A, Yang R, Serhan CN. 2011. Pro-resolving actions and stereoselective biosynthesis of 18S E-series resolvins in human leukocytes and murine inflammation. J. Clin. Invest. 121: 569–181. [CrossRef] [PubMed] [Google Scholar]
  • Ohira T, Arita M, Omori K, Recchiuti A, Van Dyke TE,Serhan CN. 2010. Resolvin E1 receptor activation signals phosphorylation and phagocytosis. J. Biol. Chem. 285: 3451–3461. [CrossRef] [PubMed] [Google Scholar]
  • Orr SK, Palumbo S, Bosetti F, et al. 2013. Unesterified docosahexaenoic acid is protective in neuroinflammation. J. Neurochem. [Google Scholar]
  • Pascual G, Rodriguez M, Sotomayor S, Perez-Kohler B, Bellon JM. 2012. Inflammatory reaction and neotissue maturation in the early host tissue incorporation of polypropylene prostheses. Hernia 16: 697–707. [CrossRef] [PubMed] [Google Scholar]
  • Pei L, Zhang J, Zhao F, et al. 2011. Annexin 1 exerts anti-nociceptive effects after peripheral inflammatory pain through formyl-peptide-receptor-like 1 in rat dorsal root ganglion. Br. J. Anaesth. 107: 948–958. [CrossRef] [PubMed] [Google Scholar]
  • Quinn SR, O’Neill LA. 2011. A trio of microRNAs that control Toll-like receptor signalling. Int. Immunol. 23: 421–425. [CrossRef] [PubMed] [Google Scholar]
  • Ransohoff RM, Cardona AE. 2010. The myeloid cells of the central nervous system parenchyma. Nature 468: 253–262. [CrossRef] [PubMed] [Google Scholar]
  • Recchiuti A. 2013. Resolvin D1 and its GPCRs in resolution circuits of inflammation. Prostaglandins Other Lipid Mediat. 107: 64–76. [CrossRef] [PubMed] [Google Scholar]
  • Recchiuti A, Krishnamoorthy S, Fredman G, Chiang N, Serhan CN. 2011. MicroRNAs in resolution of acute inflammation: identification of novel resolvin D1-miRNA circuits. Faseb J. 25: 544–560. [CrossRef] [PubMed] [Google Scholar]
  • Recchiuti A, Serhan CN. 2012. Pro-Resolving Lipid Mediators (SPMs) and Their Actions in Regulating miRNA in Novel Resolution Circuits in Inflammation. Front Immunol. 3: 298. [CrossRef] [PubMed] [Google Scholar]
  • Recchiuti A, Codagnone M, Pierdomenico AM, et al. 2014. Immunoresolving actions of oral resolvin D1 include selective regulation of the transcription machinery in resolution-phase mouse macrophages. FASEB J. 28: 3090–3102. [CrossRef] [PubMed] [Google Scholar]
  • Rogerio AP, Haworth O, Croze R, et al. 2012. Resolvin D1 and aspirin-triggered resolvin D1 promote resolution of allergic airways responses. J. Immunol. 189: 1983–1991. [CrossRef] [PubMed] [Google Scholar]
  • Samson M, Edinger AL, Stordeur P, et al. 1998. ChemR23, a putative chemoattractant receptor, is expressed in monocyte-derived dendritic cells and macrophages and is a coreceptor for SIV and some primary HIV-1 strains. Eur. J. Immunol. 28: 1689–1700. [CrossRef] [PubMed] [Google Scholar]
  • Schif-Zuck S, Gross N, Assi S, Rostoker R, Serhan CN, Ariel A. 2011. Saturated-efferocytosis generates pro-resolving CD11b low macrophages: modulation by resolvins and glucocorticoids. Eur. J. Immunol. 41: 366–379. [CrossRef] [PubMed] [Google Scholar]
  • Schwab JM, Chiang N, Arita M, and Serhan CN. 2007. Resolvin E1 and protectin D1 activate inflammation-resolution programmes. Nature 447: 869–874. [CrossRef] [PubMed] [Google Scholar]
  • Seki H, Tani Y, and Arita M. 2009. Omega-3 PUFA derived anti-inflammatory lipid mediator resolvin E1. Prostaglandins Other Lipid Mediat. 89: 126–130. [CrossRef] [PubMed] [Google Scholar]
  • Seki H, Fukunaga K, Arita M, et al. 2010. The anti-inflammatory and proresolving mediator resolvin E1 protects mice from bacterial pneumonia and acute lung injury. J. Immunol. 184: 836–843. [CrossRef] [PubMed] [Google Scholar]
  • Serhan CN. 2008. Controlling the resolution of acute inflammation: a new genus of dual anti-inflammatory and proresolving mediators. J. Periodontol. 79: 1520–1526. [CrossRef] [PubMed] [Google Scholar]
  • Serhan CN. 2014. Pro-resolving lipid mediators are leads for resolution physiology. Nature 510: 92–101. [CrossRef] [PubMed] [Google Scholar]
  • Serhan CN, Chiang N. 2013. Resolution phase lipid mediators of inflammation: agonists of resolution. Curr. Opin. Pharmacol. 13: 632–640. [CrossRef] [PubMed] [Google Scholar]
  • Serhan CN, Clish CB, Brannon J, Colgan SP, Chiang N, Gronert K. 2000. Novel functional sets of lipid-derived mediators with antiinflammatory actions generated from omega-3 fatty acids via cyclooxygenase 2-nonsteroidal antiinflammatory drugs and transcellular processing. J. Exp. Med. 192: 1197–1204. [CrossRef] [PubMed] [Google Scholar]
  • Serhan CN, Hong S, Gronert K, et al. 2002. Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. J. Exp. Med. 196: 1025–1037. [CrossRef] [PubMed] [Google Scholar]
  • Sheedy FJ, O’Neill LA. 2008. Adding fuel to fire: microRNAs as a new class of mediators of inflammation. Ann. Rheum. Dis. 67: iii50–55. [CrossRef] [PubMed] [Google Scholar]
  • Simopoulos AP. 2001. n-3 fatty acids and human health: defining strategies for public policy. Lipids 36: S83–89. [CrossRef] [PubMed] [Google Scholar]
  • Solito E, Sastre M. 2012. Microglia function in Alzheimer’s disease. Front Pharmacol. 3: 14. [CrossRef] [PubMed] [Google Scholar]
  • Tian H, Lu Y, Sherwood AM, Hongqian D, Hong S. 2009. Resolvins E1 and D1 in choroid-retinal endothelial cells and leukocytes: biosynthesis and mechanisms of anti-inflammatory actions. Invest. Ophthalmol. Vis. Sci. 50: 3613–6320. [CrossRef] [PubMed] [Google Scholar]
  • Titos E, Rius B, Gonzalez-Periz A, et al. 2011. Resolvin D1 and its precursor docosahexaenoic acid promote resolution of adipose tissue inflammation by eliciting macrophage polarization toward an M2-like phenotype. J. Immunol. 187: 5408–5418. [CrossRef] [PubMed] [Google Scholar]
  • Wang B, Gong X, Wan JY, et al. 2011. Resolvin D1 protects mice from LPS-induced acute lung injury. Pulm Pharmacol. Ther. 24: 434–441. [CrossRef] [PubMed] [Google Scholar]
  • Wang L, Yuan R, Yao C, et al. 2014. Effects of resolvin D1 on inflammatory responses and oxidative stress of lipopolysaccharide-induced acute lung injury in mice. Chin. Med. J. (Engl) 127: 803–809. [Google Scholar]
  • Wang X, Hjorth E, Vedin I, et al. 2015a. Effects of n-3 FA supplementation on the release of proresolving lipid mediators by blood mononuclear cells: the OmegAD study. J. Lipid Res. 56: 674–681. [CrossRef] [PubMed] [Google Scholar]
  • Wang X, Zhu M, Hjorth E, et al. 2015b. Resolution of inflammation is altered in Alzheimer’s disease. Alzheimers Dement 11: 40–50 e1–2. [CrossRef] [PubMed] [Google Scholar]
  • Woodroofe MN. 1995. Cytokine production in the central nervous system. Neurology 45: S6–10. [CrossRef] [PubMed] [Google Scholar]
  • Woodroofe MN, Cuzner ML. 1993. Cytokine mRNA expression in inflammatory multiple sclerosis lesions: detection by non-radioactive in situ hybridization. Cytokine 5: 583–588. [CrossRef] [PubMed] [Google Scholar]
  • Xiao Y, Huang Y, Chen ZY. 2005. Distribution, depletion and recovery of docosahexaenoic acid are region-specific in rat brain. Br. J. Nutr. 94: 544–550. [CrossRef] [PubMed] [Google Scholar]
  • Xu MX, Tan BC, Zhou W, et al. 2013. Resolvin D1, an endogenous lipid mediator for inactivation of inflammation-related signaling pathways in microglial cells, prevents lipopolysaccharide-induced inflammatory responses. CNS Neurosci. Ther. 19: 235–243. [CrossRef] [PubMed] [Google Scholar]
  • Xu ZZ, Berta T, Ji RR. 2013. Resolvin E1 inhibits neuropathic pain and spinal cord microglial activation following peripheral nerve injury. J. Neuroimmune Pharmacol. 8: 37–41. [CrossRef] [PubMed] [Google Scholar]
  • Yaxin W, Shanglong Y, Huaqing S, et al. 2014. Resolvin D1 attenuates lipopolysaccharide induced acute lung injury through CXCL-12/CXCR4 pathway. J. Surg. Res. 188: 213–221. [CrossRef] [PubMed] [Google Scholar]
  • Yirmiya R, Goshen I. 2011. Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain. Behav. Immun. 25: 181–213. [CrossRef] [PubMed] [Google Scholar]
  • Zhou L, Zang G, Zhang G, et al. 2013. MicroRNA and mRNA signatures in ischemia reperfusion injury in heart transplantation. PLoS One 8: e79805. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.