Open Access
Issue
OCL
Volume 23, Number 1, January-February 2016
Article Number D104
Number of page(s) 6
Section Dossier: Lipids and Brain / Lipides et cerveau
DOI https://doi.org/10.1051/ocl/2015062
Published online 18 December 2015
  • Ariel A, Serhan CN. 2007. Resolvins and protectins in the termination program of acute inflammation. Trends Immunol 28: 176–183. [CrossRef] [PubMed] [Google Scholar]
  • Arita M, Bianchini F, Aliberti J, et al. 2005. Stereochemical assignment, antiinflammatory properties, and receptor for the omega-3 lipid mediator resolvin E1. J. Exp. Med. 201: 713–722. [CrossRef] [PubMed] [Google Scholar]
  • Arita M, Ohira T, Sun YP, Elangovan S, Chiang N, Serhan CN. 2007. Resolvin E1 selectively interacts with leukotriene B4 receptor BLT1 and ChemR23 to regulate inflammation. J. Immunol. 178: 3912–3917. [CrossRef] [PubMed] [Google Scholar]
  • Bannenberg G, Serhan CN. 2010. Specialized pro-resolving lipid mediators in the inflammatory response: An update. Biochim. Biophys. Acta 1801: 1260–1273. [CrossRef] [PubMed] [Google Scholar]
  • Bartel DP. 2009. MicroRNAs: target recognition and regulatory functions. Cell 136: 215–233. [CrossRef] [PubMed] [Google Scholar]
  • Bazinet RP, Laye S. 2014. Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat. Rev. Neurosci. 15: 771–785. [CrossRef] [PubMed] [Google Scholar]
  • Biber K, Neumann H, Inoue K, Boddeke HW. 2007. Neuronal ’On’ and ’Off’ signals control microglia. Trends Neurosci. 30: 596–602. [CrossRef] [PubMed] [Google Scholar]
  • Blais V, Rivest S. 2003. [Role of the innate immune response in the brain]. Med. Sci. (Paris) 19: 981–987. [Google Scholar]
  • Calder PC. 2001. omega 3 polyunsaturated fatty acids, inflammation and immunity. World Rev. Nutr. Diet. 88: 109–116. [CrossRef] [Google Scholar]
  • Calder PC. 2010. Omega-3 fatty acids and inflammatory processes. Nutrients 2: 355–374. [CrossRef] [PubMed] [Google Scholar]
  • Calder PC. 2013. n-3 fatty acids, inflammation and immunity: new mechanisms to explain old actions. Proc. Nutr. Soc. 72: 326-36. [CrossRef] [PubMed] [Google Scholar]
  • Carson MJ, Thrash JC, Walter B. 2006. The cellular response in neuroinflammation: The role of leukocytes, microglia and astrocytes in neuronal death and survival. Clin. Neurosci. Res. 6: 237–245. [CrossRef] [PubMed] [Google Scholar]
  • Ceppi M, Pereira PM, Dunand-Sauthier I, et al. 2009. MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells. Proc. Natl. Acad. Sci. USA 106: 2735–2740. [CrossRef] [Google Scholar]
  • Chen J, Shetty S, Zhang P, et al. 2014. Aspirin-triggered resolvin D1 down-regulates inflammatory responses and protects against endotoxin-induced acute kidney injury. Toxicol. Appl. Pharmacol. 277: 118–123. [CrossRef] [PubMed] [Google Scholar]
  • Chiang N, Fredman G, Backhed F, et al. 2012. Infection regulates pro-resolving mediators that lower antibiotic requirements. Nature 484: 524–528. [CrossRef] [PubMed] [Google Scholar]
  • Claria J, Gonzalez-Periz A, Lopez-Vicario C, Rius B, Titos E. 2011. New insights into the role of macrophages in adipose tissue inflammation and Fatty liver disease: modulation by endogenous omega-3 Fatty Acid-derived lipid mediators. Front Immunol. 2: 49. [CrossRef] [PubMed] [Google Scholar]
  • Claria J, Dalli J, Yacoubian S, Gao F, Serhan CN. 2012. Resolvin D1 and resolvin D2 govern local inflammatory tone in obese fat. J. Immunol. 189: 2597-605. [CrossRef] [PubMed] [Google Scholar]
  • Cunningham C, Sanderson DJ. 2008. Malaise in the water maze: untangling the effects of LPS and IL-1beta on learning and memory. Brain. Behav. Immun. 22: 1117–1127. [CrossRef] [PubMed] [Google Scholar]
  • Davalos D, Grutzendler J, Yang G, et al. 2005. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 8: 752–758. [CrossRef] [PubMed] [Google Scholar]
  • De Smedt-Peyrusse V, Sargueil F, Moranis A, Harizi H, Mongrand S, Laye S. 2008. Docosahexaenoic acid prevents lipopolysaccharide-induced cytokine production in microglial cells by inhibiting lipopolysaccharide receptor presentation but not its membrane subdomain localization. J. Neurochem. 105: 296–307. [CrossRef] [PubMed] [Google Scholar]
  • Delpech JC, Madore C, Joffre C, et al. 2015a. Transgenic increase in n-3/n-6 fatty acid ratio protects against cognitive deficits induced by an immune challenge through decrease of neuroinflammation. Neuropsychopharmacology 40: 525–536. [CrossRef] [PubMed] [Google Scholar]
  • Delpech JC, Madore C, Nadjar A, Joffre C, Wohleb ES, Laye S. 2015b. Microglia in neuronal plasticity: Influence of stress. Neuropharmacology 96: 19-28. [CrossRef] [PubMed] [Google Scholar]
  • Delpech JC, Thomazeau A, Madore C, et al. 2015c. Dietary n-3 PUFAs Deficiency Increases Vulnerability to Inflammation-Induced Spatial Memory Impairment. Neuropsychopharmacology. [Google Scholar]
  • Dona M, Fredman G, Schwab JM, et al. 2008. Resolvin E1, an EPA-derived mediator in whole blood, selectively counterregulates leukocytes and platelets. Blood 112: 848–855. [CrossRef] [PubMed] [Google Scholar]
  • El Kebir D, Gjorstrup P, Filep JG. 2012. Resolvin E1 promotes phagocytosis-induced neutrophil apoptosis and accelerates resolution of pulmonary inflammation. Proc. Natl. Acad. Sci. USA 109: 14983–14988. [CrossRef] [Google Scholar]
  • Faraoni I, Antonetti FR, Cardone J, Bonmassar E. 2009. miR-155 gene: a typical multifunctional microRNA. Biochim. Biophys. Acta 1792: 497–505. [CrossRef] [PubMed] [Google Scholar]
  • Fiala M, Halder RC, Sagong B, et al. 2015. omega-3 Supplementation increases amyloid-beta phagocytosis and resolvin D1 in patients with minor cognitive impairment. Faseb J. 29: 2681–2689. [CrossRef] [PubMed] [Google Scholar]
  • Fredman G, Serhan CN. 2011. Specialized proresolving mediator targets for RvE1 and RvD1 in peripheral blood and mechanisms of resolution. Biochem. J. 437: 185–197. [CrossRef] [PubMed] [Google Scholar]
  • Garden GA, Moller T. 2006. Microglia biology in health and disease. J. Neuroimmune Pharmacol. 1: 127–137. [CrossRef] [PubMed] [Google Scholar]
  • Hanisch UK, Kettenmann H. 2007. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat. Neurosci. 10: 1387–1394. [CrossRef] [PubMed] [Google Scholar]
  • Harrison JL, Rowe RK, Ellis TW, et al. 2015. Resolvins AT-D1 and E1 differentially impact functional outcome, post-traumatic sleep, and microglial activation following diffuse brain injury in the mouse. Brain. Behav. Immun. 47: 131–140. [CrossRef] [PubMed] [Google Scholar]
  • Headland SE, Norling LV. 2015. The resolution of inflammation: Principles and challenges. Semin. Immunol. 27: 149–160. [CrossRef] [PubMed] [Google Scholar]
  • Herrera BS, Hasturk H, Kantarci A, et al. 2015. Impact of resolvin E1 on murine neutrophil phagocytosis in type 2 diabetes. Infect. Immun. 83: 792–801. [CrossRef] [PubMed] [Google Scholar]
  • Ji RR, Xu ZZ, Strichartz G, Serhan CN. 2011. Emerging roles of resolvins in the resolution of inflammation and pain. Trends Neurosci. 34: 599–609. [CrossRef] [PubMed] [Google Scholar]
  • Krishnamoorthy S, Recchiuti A, Chiang N, et al. 2010. Resolvin D1 binds human phagocytes with evidence for proresolving receptors. Proc. Natl. Acad. Sci. USA 107: 1660–1665. [CrossRef] [Google Scholar]
  • Labrousse VF, Nadjar A, Joffre C, et al. 2012. Short-term long chain omega3 diet protects from neuroinflammatory processes and memory impairment in aged mice. PLoS One 7: e36861. [CrossRef] [PubMed] [Google Scholar]
  • Lafourcade M, Larrieu T, Mato S, et al. 2011. Nutritional omega-3 deficiency abolishes endocannabinoid-mediated neuronal functions. Nat. Neurosci. 14: 345–350. [CrossRef] [PubMed] [Google Scholar]
  • Larrieu T, Madore C, Joffre C, Laye S. 2012. Nutritional n-3 polyunsaturated fatty acids deficiency alters cannabinoid receptor signaling pathway in the brain and associated anxiety-like behavior in mice. J. Physiol. Biochem. 68: 671–681. [CrossRef] [PubMed] [Google Scholar]
  • Laye S. 2010. Polyunsaturated fatty acids, neuroinflammation and well being. Prostaglandins Leukot Essent Fatty Acids 82: 295–303. [CrossRef] [PubMed] [Google Scholar]
  • Lee HN, Surh YJ. 2012. Therapeutic potential of resolvins in the prevention and treatment of inflammatory disorders. Biochem. Pharmacol. 84: 1340–1350. [CrossRef] [PubMed] [Google Scholar]
  • Li L, Wu Y, Wang Y, et al. 2014. Resolvin D1 promotes the interleukin-4-induced alternative activation in BV-2 microglial cells. J. Neuroinflammation 11: 72. [CrossRef] [PubMed] [Google Scholar]
  • Luchtman DW, Song C. 2013. Cognitive enhancement by omega-3 fatty acids from child-hood to old age: findings from animal and clinical studies. Neuropharmacology 64: 550–565. [CrossRef] [PubMed] [Google Scholar]
  • Madore C, Joffre C, Delpech JC, et al. 2013. Early morphofunctional plasticity of microglia in response to acute lipopolysaccharide. Brain. Behav. Immun. 34: 151–158. [CrossRef] [PubMed] [Google Scholar]
  • Madore C, Nadjar A, Delpech JC, et al. 2014. Nutritional n-3 PUFAs deficiency during perinatal periods alters brain innate immune system and neuronal plasticity-associated genes. Brain. Behav. Immun. 41: 22–31. [CrossRef] [PubMed] [Google Scholar]
  • Mingam R, Moranis A, Bluthe RM, et al. 2008. Uncoupling of interleukin-6 from its signalling pathway by dietary n-3-polyunsaturated fatty acid deprivation alters sickness behaviour in mice. Eur. J. Neurosci. 28: 1877–1886. [CrossRef] [PubMed] [Google Scholar]
  • Mizwicki MT, Liu G, Fiala M, et al. 2013. 1alpha,25-dihydroxyvitamin D3 and resolvin D1 retune the balance between amyloid-beta phagocytosis and inflammation in Alzheimer’s disease patients. J. Alzheimers Dis. 34: 155–170. [PubMed] [Google Scholar]
  • Moranis A, Delpech JC, De Smedt-Peyrusse V, et al. 2012. Long term adequate n-3 polyunsaturated fatty acid diet protects from depressive-like behavior but not from working memory disruption and brain cytokine expression in aged mice. Brain. Behav. Immun. 26: 721–731. [CrossRef] [PubMed] [Google Scholar]
  • Navarro-Xavier RA, Newson J, Silveira VL, Farrow SN, Gilroy DW, Bystrom J. 2010. A new strategy for the identification of novel molecules with targeted proresolution of inflammation properties. J. Immunol. 184: 1516–1525. [CrossRef] [PubMed] [Google Scholar]
  • Nimmerjahn A, Kirchhoff F, Helmchen F. 2005. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308: 1314–1318. [CrossRef] [PubMed] [Google Scholar]
  • Norheim F, Gjelstad IM, Hjorth M, et al. 2012. Molecular nutrition research: the modern way of performing nutritional science. Nutrients 4: 1898–1944. [CrossRef] [PubMed] [Google Scholar]
  • O’Connell RM, Taganov DK, Boldin MP, Cheng G, Baltimore D. 2007. MicroRNA-155 is induced during the macrophage inflammatory response. Proc. Natl. Acad. Sci. USA 104: 1604–1609. [CrossRef] [Google Scholar]
  • O’Neill LA, Sheedy FJ, McCoy CE. 2011. MicroRNAs: the fine-tuners of Toll-like receptor signalling. Nat. Rev. Immunol. 11: 163–175. [CrossRef] [PubMed] [Google Scholar]
  • Oh SF, Pillai PS, Recchiuti A, Yang R, Serhan CN. 2011. Pro-resolving actions and stereoselective biosynthesis of 18S E-series resolvins in human leukocytes and murine inflammation. J. Clin. Invest. 121: 569–181. [CrossRef] [PubMed] [Google Scholar]
  • Ohira T, Arita M, Omori K, Recchiuti A, Van Dyke TE,Serhan CN. 2010. Resolvin E1 receptor activation signals phosphorylation and phagocytosis. J. Biol. Chem. 285: 3451–3461. [CrossRef] [PubMed] [Google Scholar]
  • Orr SK, Palumbo S, Bosetti F, et al. 2013. Unesterified docosahexaenoic acid is protective in neuroinflammation. J. Neurochem. [Google Scholar]
  • Pascual G, Rodriguez M, Sotomayor S, Perez-Kohler B, Bellon JM. 2012. Inflammatory reaction and neotissue maturation in the early host tissue incorporation of polypropylene prostheses. Hernia 16: 697–707. [CrossRef] [PubMed] [Google Scholar]
  • Pei L, Zhang J, Zhao F, et al. 2011. Annexin 1 exerts anti-nociceptive effects after peripheral inflammatory pain through formyl-peptide-receptor-like 1 in rat dorsal root ganglion. Br. J. Anaesth. 107: 948–958. [CrossRef] [PubMed] [Google Scholar]
  • Quinn SR, O’Neill LA. 2011. A trio of microRNAs that control Toll-like receptor signalling. Int. Immunol. 23: 421–425. [CrossRef] [PubMed] [Google Scholar]
  • Ransohoff RM, Cardona AE. 2010. The myeloid cells of the central nervous system parenchyma. Nature 468: 253–262. [CrossRef] [PubMed] [Google Scholar]
  • Recchiuti A. 2013. Resolvin D1 and its GPCRs in resolution circuits of inflammation. Prostaglandins Other Lipid Mediat. 107: 64–76. [CrossRef] [PubMed] [Google Scholar]
  • Recchiuti A, Krishnamoorthy S, Fredman G, Chiang N, Serhan CN. 2011. MicroRNAs in resolution of acute inflammation: identification of novel resolvin D1-miRNA circuits. Faseb J. 25: 544–560. [CrossRef] [PubMed] [Google Scholar]
  • Recchiuti A, Serhan CN. 2012. Pro-Resolving Lipid Mediators (SPMs) and Their Actions in Regulating miRNA in Novel Resolution Circuits in Inflammation. Front Immunol. 3: 298. [CrossRef] [PubMed] [Google Scholar]
  • Recchiuti A, Codagnone M, Pierdomenico AM, et al. 2014. Immunoresolving actions of oral resolvin D1 include selective regulation of the transcription machinery in resolution-phase mouse macrophages. FASEB J. 28: 3090–3102. [CrossRef] [PubMed] [Google Scholar]
  • Rogerio AP, Haworth O, Croze R, et al. 2012. Resolvin D1 and aspirin-triggered resolvin D1 promote resolution of allergic airways responses. J. Immunol. 189: 1983–1991. [CrossRef] [PubMed] [Google Scholar]
  • Samson M, Edinger AL, Stordeur P, et al. 1998. ChemR23, a putative chemoattractant receptor, is expressed in monocyte-derived dendritic cells and macrophages and is a coreceptor for SIV and some primary HIV-1 strains. Eur. J. Immunol. 28: 1689–1700. [CrossRef] [PubMed] [Google Scholar]
  • Schif-Zuck S, Gross N, Assi S, Rostoker R, Serhan CN, Ariel A. 2011. Saturated-efferocytosis generates pro-resolving CD11b low macrophages: modulation by resolvins and glucocorticoids. Eur. J. Immunol. 41: 366–379. [CrossRef] [PubMed] [Google Scholar]
  • Schwab JM, Chiang N, Arita M, and Serhan CN. 2007. Resolvin E1 and protectin D1 activate inflammation-resolution programmes. Nature 447: 869–874. [CrossRef] [PubMed] [Google Scholar]
  • Seki H, Tani Y, and Arita M. 2009. Omega-3 PUFA derived anti-inflammatory lipid mediator resolvin E1. Prostaglandins Other Lipid Mediat. 89: 126–130. [CrossRef] [PubMed] [Google Scholar]
  • Seki H, Fukunaga K, Arita M, et al. 2010. The anti-inflammatory and proresolving mediator resolvin E1 protects mice from bacterial pneumonia and acute lung injury. J. Immunol. 184: 836–843. [CrossRef] [PubMed] [Google Scholar]
  • Serhan CN. 2008. Controlling the resolution of acute inflammation: a new genus of dual anti-inflammatory and proresolving mediators. J. Periodontol. 79: 1520–1526. [CrossRef] [PubMed] [Google Scholar]
  • Serhan CN. 2014. Pro-resolving lipid mediators are leads for resolution physiology. Nature 510: 92–101. [CrossRef] [PubMed] [Google Scholar]
  • Serhan CN, Chiang N. 2013. Resolution phase lipid mediators of inflammation: agonists of resolution. Curr. Opin. Pharmacol. 13: 632–640. [CrossRef] [PubMed] [Google Scholar]
  • Serhan CN, Clish CB, Brannon J, Colgan SP, Chiang N, Gronert K. 2000. Novel functional sets of lipid-derived mediators with antiinflammatory actions generated from omega-3 fatty acids via cyclooxygenase 2-nonsteroidal antiinflammatory drugs and transcellular processing. J. Exp. Med. 192: 1197–1204. [CrossRef] [PubMed] [Google Scholar]
  • Serhan CN, Hong S, Gronert K, et al. 2002. Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. J. Exp. Med. 196: 1025–1037. [CrossRef] [PubMed] [Google Scholar]
  • Sheedy FJ, O’Neill LA. 2008. Adding fuel to fire: microRNAs as a new class of mediators of inflammation. Ann. Rheum. Dis. 67: iii50–55. [CrossRef] [PubMed] [Google Scholar]
  • Simopoulos AP. 2001. n-3 fatty acids and human health: defining strategies for public policy. Lipids 36: S83–89. [CrossRef] [PubMed] [Google Scholar]
  • Solito E, Sastre M. 2012. Microglia function in Alzheimer’s disease. Front Pharmacol. 3: 14. [CrossRef] [PubMed] [Google Scholar]
  • Tian H, Lu Y, Sherwood AM, Hongqian D, Hong S. 2009. Resolvins E1 and D1 in choroid-retinal endothelial cells and leukocytes: biosynthesis and mechanisms of anti-inflammatory actions. Invest. Ophthalmol. Vis. Sci. 50: 3613–6320. [CrossRef] [PubMed] [Google Scholar]
  • Titos E, Rius B, Gonzalez-Periz A, et al. 2011. Resolvin D1 and its precursor docosahexaenoic acid promote resolution of adipose tissue inflammation by eliciting macrophage polarization toward an M2-like phenotype. J. Immunol. 187: 5408–5418. [CrossRef] [PubMed] [Google Scholar]
  • Wang B, Gong X, Wan JY, et al. 2011. Resolvin D1 protects mice from LPS-induced acute lung injury. Pulm Pharmacol. Ther. 24: 434–441. [CrossRef] [PubMed] [Google Scholar]
  • Wang L, Yuan R, Yao C, et al. 2014. Effects of resolvin D1 on inflammatory responses and oxidative stress of lipopolysaccharide-induced acute lung injury in mice. Chin. Med. J. (Engl) 127: 803–809. [Google Scholar]
  • Wang X, Hjorth E, Vedin I, et al. 2015a. Effects of n-3 FA supplementation on the release of proresolving lipid mediators by blood mononuclear cells: the OmegAD study. J. Lipid Res. 56: 674–681. [CrossRef] [PubMed] [Google Scholar]
  • Wang X, Zhu M, Hjorth E, et al. 2015b. Resolution of inflammation is altered in Alzheimer’s disease. Alzheimers Dement 11: 40–50 e1–2. [CrossRef] [PubMed] [Google Scholar]
  • Woodroofe MN. 1995. Cytokine production in the central nervous system. Neurology 45: S6–10. [CrossRef] [PubMed] [Google Scholar]
  • Woodroofe MN, Cuzner ML. 1993. Cytokine mRNA expression in inflammatory multiple sclerosis lesions: detection by non-radioactive in situ hybridization. Cytokine 5: 583–588. [CrossRef] [PubMed] [Google Scholar]
  • Xiao Y, Huang Y, Chen ZY. 2005. Distribution, depletion and recovery of docosahexaenoic acid are region-specific in rat brain. Br. J. Nutr. 94: 544–550. [CrossRef] [PubMed] [Google Scholar]
  • Xu MX, Tan BC, Zhou W, et al. 2013. Resolvin D1, an endogenous lipid mediator for inactivation of inflammation-related signaling pathways in microglial cells, prevents lipopolysaccharide-induced inflammatory responses. CNS Neurosci. Ther. 19: 235–243. [CrossRef] [PubMed] [Google Scholar]
  • Xu ZZ, Berta T, Ji RR. 2013. Resolvin E1 inhibits neuropathic pain and spinal cord microglial activation following peripheral nerve injury. J. Neuroimmune Pharmacol. 8: 37–41. [CrossRef] [PubMed] [Google Scholar]
  • Yaxin W, Shanglong Y, Huaqing S, et al. 2014. Resolvin D1 attenuates lipopolysaccharide induced acute lung injury through CXCL-12/CXCR4 pathway. J. Surg. Res. 188: 213–221. [CrossRef] [PubMed] [Google Scholar]
  • Yirmiya R, Goshen I. 2011. Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain. Behav. Immun. 25: 181–213. [CrossRef] [PubMed] [Google Scholar]
  • Zhou L, Zang G, Zhang G, et al. 2013. MicroRNA and mRNA signatures in ischemia reperfusion injury in heart transplantation. PLoS One 8: e79805. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.