Open Access
Numéro |
OCL
Volume 23, Numéro 1, January-February 2016
|
|
---|---|---|
Numéro d'article | D103 | |
Nombre de pages | 10 | |
Section | Dossier: Lipids and Brain / Lipides et cerveau | |
DOI | https://doi.org/10.1051/ocl/2015064 | |
Publié en ligne | 19 janvier 2016 |
- Aid S, Bosetti F. 2007. Gene expression of cyclooxygenase-1 and Ca2+-independent phospholipase A2 is altered in rat hippocampus during normal aging. Brain Res. Bull. 73: 108–113. [CrossRef] [PubMed] [Google Scholar]
- Aid S, Bosetti F. 2011. Targeting cyclooxygenases-1 and -2 in neuroinflammation: Therapeutic implications. Biochimie 93: 46–51. [CrossRef] [PubMed] [Google Scholar]
- Alfano CM, Imayama I, Neuhouser ML, et al. 2012. Fatigue, inflammation, and omega-3 and omega-6 fatty acid intake among breast cancer survivors. J. Clin. Oncol. 30: 1280–1287. [CrossRef] [PubMed] [Google Scholar]
- Andre C, O’Connor JC, Kelley KW, Lestage J, Dantzer R, Castanon, N. 2008. Spatio-temporal differences in the profile of murine brain expression of proinflammatory cytokines and indoleamine 2,3-dioxygenase in response to peripheral lipopolysaccharide administration. J. Neuroimmunol. 200: 90–99. [CrossRef] [PubMed] [Google Scholar]
- Ariel A, Serhan CN. 2007. Resolvins and protectins in the termination program of acute inflammation. Trends Immunol. 28: 176–183. [CrossRef] [Google Scholar]
- Barrientos RM, Frank MG, Hein AM, et al. 2009. Time course of hippocampal IL-1 beta and memory consolidation impairments in aging rats following peripheral infection. Brain Behav. Immun. 23: 46–54. [CrossRef] [PubMed] [Google Scholar]
- Barrientos RM., Kitt MM, Watkins LR., Maier SF. 2015. Neuroinflammation in the normal aging hippocampus. Neuroscience 309: 84–99. [CrossRef] [PubMed] [Google Scholar]
- Bazan NG. 2006. Cell survival matters: docosahexaenoic acid signaling, neuroprotection and photoreceptors. Trends Neurosci. 29: 263–271. [CrossRef] [Google Scholar]
- Bazan NG. 2007. Omega-3 fatty acids, pro-inflammatory signaling and neuroprotection. Curr. Opin. Clin. Nutr. Metab. Care 10: 136–141. [Google Scholar]
- Bazan NG. 2012. Neuroinflammation and proteostasis are modulated by endogenously biosynthesized neuroprotectin D1. Mol. Neurobiol. 46: 221–226. [CrossRef] [PubMed] [Google Scholar]
- Bazan NG, Eady TN, Khoutorova L, et al. 2012. Novel aspirin-triggered neuroprotectin D1 attenuates cerebral ischemic injury after experimental stroke. Exp. Neurol 236: 122–130. [CrossRef] [PubMed] [Google Scholar]
- Bazan NG, Molina MF, Gordon WC. 2011. Docosahexaenoic acid signalolipidomics in nutrition: significance in aging, neuroinflammation, macular degeneration, Alzheimer’s, and other neurodegenerative diseases. Annu. Rev. Nutr. 31: 321–351. [CrossRef] [PubMed] [Google Scholar]
- Bazinet RP, Laye S. 2014. Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat. Rev. Neurosci. 15: 771–785. [Google Scholar]
- Cagnin A, Kassiou M, Meikle SR, Banati RB. 2007. Positron emission tomography imaging of neuroinflammation. Neurotherapeutics 4: 443–452. [CrossRef] [Google Scholar]
- Calder PC. 2013. n-3 fatty acids, inflammation and immunity: new mechanisms to explain old actions. Proc. Nutr. Soc. 72: 326–336. [Google Scholar]
- Calder PC. 2015. Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. Biochim. Biophys. Acta 1851: 469–484. [Google Scholar]
- Calder PC, Grimble RF. 2002. Polyunsaturated fatty acids, inflammation and immunity. Eur. J. Clin. Nutr. 56: S14–19. [CrossRef] [PubMed] [Google Scholar]
- Campbell BM, Charych E, Lee AW, Moller T. 2014. Kynurenines in CNS disease: regulation by inflammatory cytokines. Front. Neurosci. 8: 12. [CrossRef] [PubMed] [Google Scholar]
- Capuron L, Miller AH. 2011. Immune system to brain signaling: neuropsychopharmacological implications. Pharmacol. Ther. 130: 226–238. [Google Scholar]
- Capuron L, Schroecksnadel S, Feart C, Aubert A, Higueret D, Barberger-Gateau P, Laye S, Fuchs D, 2011. Chronic low-grade inflammation in elderly persons is associated with altered tryptophan and tyrosine metabolism: role in neuropsychiatric symptoms. Biol. Psychiatry. 70: 175–182. [CrossRef] [PubMed] [Google Scholar]
- Castanon N, Lasselin J, Capuron L. 2014. Neuropsychiatric comorbidity in obesity: role of inflammatory processes. Front. Endocrinol. (Lausanne) 5: 74. [CrossRef] [Google Scholar]
- Chu J, Pratico D. 2013. 5-Lipoxygenase pharmacological blockade decreases tau phosphorylation in vivo: involvement of the cyclin-dependent kinase-5. Neurobiol. Aging. 34: 1549–1554. [CrossRef] [PubMed] [Google Scholar]
- Chu J, Giannopoulos PF, Ceballos-Diaz C, Golde TE, Pratico D. 2012. 5-Lipoxygenase gene transfer worsens memory, amyloid, and tau brain pathologies in a mouse model of Alzheimer disease. Ann. Neurol. 72: 442–454. [CrossRef] [PubMed] [Google Scholar]
- Chu J, Li JG, Giannopoulos PF, Blass BE, Childers W, Abou-Gharbia M, Pratico D. 2015. Pharmacologic blockade of 12/15-lipoxygenase ameliorates memory deficits, Abeta and tau neuropathology in the triple-transgenic mice. Mol. Psychiatry. 20: 1329–38. [CrossRef] [PubMed] [Google Scholar]
- Cunningham C, Wilcockson DC, Campion S, Lunnon K, Perry VH. 2005. Central and systemic endotoxin challenges exacerbate the local inflammatory response and increase neuronal death during chronic neurodegeneration. J. Neurosci. 25: 9275–9284. [CrossRef] [PubMed] [Google Scholar]
- Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW. 2008. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat. Rev. Neurosci. 9: 46–56. [Google Scholar]
- De la Monte SM. 2012. Brain insulin resistance and deficiency as therapeutic targets in Alzheimer’s disease. Curr. Alzheimer. Res. 9: 35–66. [CrossRef] [PubMed] [Google Scholar]
- De Smedt-Peyrusse V, Sargueil F, Moranis A, Harizi H, et al. 2008. Docosahexaenoic acid prevents lipopolysaccharide-induced cytokine production in microglial cells by inhibiting lipopolysaccharide receptor presentation but not its membrane subdomain localization. J. Neurochem. 105: 296–307. [CrossRef] [PubMed] [Google Scholar]
- Delpech JC, Madore C, Joffre C, et al. 2015a. Transgenic increase in n-3/n-6 fatty acid ratio protects against cognitive deficits induced by an immune challenge through decrease of neuroinflammation. Neuropsychopharmacology 40: 525–536. [CrossRef] [PubMed] [Google Scholar]
- Delpech JC, Saucisse N, Parkes SL, et al. 2015b. Microglial activation enhances associative taste memory through purinergic modulation of glutamatergic neurotransmission. J. Neurosci. 35: 3022–3033. [CrossRef] [PubMed] [Google Scholar]
- Delpech JC, Thomazeau A, Madore C, et al. 2015c. Dietary n-3 PUFAs Deficiency Increases Vulnerability to Inflammation-Induced Spatial Memory Impairment. Neuropsychopharmacology 40: 2774–87. [CrossRef] [PubMed] [Google Scholar]
- Dilger RN, Johnson RW. 2008. Aging, microglial cell priming, and the discordant central inflammatory response to signals from the peripheral immune system. J. Leukoc. Biol. 84: 932–939. [CrossRef] [PubMed] [Google Scholar]
- Dinel AL, Andre C, Aubert A, Ferreira G, Laye S, Castanon N. 2014. Lipopolysaccharide-induced brain activation of the indoleamine 2,3-dioxygenase and depressive-like behavior are impaired in a mouse model of metabolic syndrome. Psychoneuroendocrinology 40: 48–59. [CrossRef] [PubMed] [Google Scholar]
- Dunn HC, Ager RR, Baglietto-Vargas D, et al. 2015. Restoration of lipoxin A4 signaling reduces Alzheimer’s disease-like pathology in the 3xTg-AD mouse model. J. Alzheimers Dis. 43: 893–903. [PubMed] [Google Scholar]
- Farzaneh-Far R, Harris WS, Garg S, Na B, Whooley MA. 2009. Inverse association of erythrocyte n-3 fatty acid levels with inflammatory biomarkers in patients with stable coronary artery disease: The Heart and Soul Study. Atherosclerosis 205: 538–543. [CrossRef] [PubMed] [Google Scholar]
- Fenn AM, Henry CJ, Huang Y, Dugan A, Godbout JP. 2012. Lipopolysaccharide-induced interleukin (IL)-4 receptor-alpha expression and corresponding sensitivity to the M2 promoting effects of IL-4 are impaired in microglia of aged mice. Brain Behav. Immun. 26: 766–777. [CrossRef] [PubMed] [Google Scholar]
- Ferdinandusse S, Denis S, Mooijer PA, et al. 2001. Identification of the peroxisomal beta-oxidation enzymes involved in the biosynthesis of docosahexaenoic acid. J. Lipid. Res. 42: 1987–1995. [PubMed] [Google Scholar]
- Ferguson JF, Mulvey CK, Patel PN, et al. 2014. Omega-3 PUFA supplementation and the response to evoked endotoxemia in healthy volunteers. Mol. Nutr. Food. Res. 58: 601–613. [CrossRef] [PubMed] [Google Scholar]
- Ferrucci L, Cherubini A, Bandinelli S, et al. 2006. Relationship of plasma polyunsaturated fatty acids to circulating inflammatory markers. J. Clin. Endocrinol. Metab. 91: 439–446. [CrossRef] [PubMed] [Google Scholar]
- Figueroa JD, Cordero K, Baldeosingh K, et al. 2012. Docosahexaenoic acid pretreatment confers protection and functional improvements after acute spinal cord injury in adult rats. J. Neurotrauma. 29: 551–566. [CrossRef] [PubMed] [Google Scholar]
- Fratiglioni L, Paillard-Borg S, Winbla B. 2004. An active and socially integrated lifestyle in late life might protect against dementia. Lancet Neurol. 3: 343–5. [CrossRef] [PubMed] [Google Scholar]
- Fratiglioni L, Winblad B, von Strauss E. 2007. Prevention of Alzheimer’s disease and dementia. Major findings from the Kungsholmen Project. Physiol. Behav. 92: 98–104. [CrossRef] [PubMed] [Google Scholar]
- Fredman G, Ozcan L, Spolitu S, Hellmann J, Spite M, Backs J, Tabas I. 2014. Resolvin D1 limits 5-lipoxygenase nuclear localization and leukotriene B4 synthesis by inhibiting a calcium-activated kinase pathway. Proc. Natl. Acad. Sci. USA 111: 14530–14535. [CrossRef] [Google Scholar]
- Frenois F, Moreau M, O’Connor J, et al. 2007. Lipopolysaccharide induces delayed FosB/DeltaFosB immunostaining within the mouse extended amygdala, hippocampus and hypothalamus, that parallel the expression of depressive-like behavior. Psychoneuroendocrinology 32: 516–531. [CrossRef] [PubMed] [Google Scholar]
- Freund Levi Y, Vedin I, Cederholm T, et al. 2014. Transfer of omega-3 fatty acids across the blood-brain barrier after dietary supplementation with a docosahexaenoic acid-rich omega-3 fatty acid preparation in patients with Alzheimer’s disease: the OmegAD study. J. Intern. Med. 275: 428–436. [CrossRef] [PubMed] [Google Scholar]
- Fritsche K. 2006. Fatty acids as modulators of the immune response. Annu. Rev. Nutr. 26: 45–73. [CrossRef] [PubMed] [Google Scholar]
- Giannopoulos PF, Chu J, Joshi YB, Sperow M, Li JG, Kirby LG, Pratico D. 2014. Gene knockout of 5-lipoxygenase rescues synaptic dysfunction and improves memory in the triple-transgenic model of Alzheimer’s disease. Mol. Psychiatry 19: 511–518. [CrossRef] [PubMed] [Google Scholar]
- Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH. 2010. Mechanisms underlying inflammation in neurodegeneration. Cell 140: 918–934. [CrossRef] [PubMed] [Google Scholar]
- Godbout JP, Chen J, Abraham J, et al. 2005. Exaggerated neuroinflammation and sickness behavior in aged mice following activation of the peripheral innate immune system. Faseb. J. 19: 1329–1331. [CrossRef] [PubMed] [Google Scholar]
- Gómez-Pinilla F. 2008. Brain foods: the effects of nutrients on brain function. Nat. Rev. Neurosci. 9: 568–78. [CrossRef] [PubMed] [Google Scholar]
- Hanisch UK, Kettenmann H. 2007. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat. Neurosci. 10: 1387–1394. [CrossRef] [PubMed] [Google Scholar]
- Harrington L, Srikanth CV, Antony R, et al. 2008. Deficiency of indoleamine 2,3-dioxygenase enhances commensal-induced antibody responses and protects against Citrobacter rodentium-induced colitis. Infect. Immun. 76: 3045–3053. [CrossRef] [PubMed] [Google Scholar]
- Heneka MT, O’Banion MK, Terwel D, Kummer MP. 2010. Neuroinflammatory processes in Alzheimer’s disease. J. Neural. Transm. 117: 919–947. [CrossRef] [PubMed] [Google Scholar]
- Heneka MT, Carson MJ, El Khoury J, et al. 2015. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 14: 388–405. [CrossRef] [PubMed] [Google Scholar]
- Hjorth E, Zhu M, Toro VC, et al. 2013. Omega-3 fatty acids enhance phagocytosis of Alzheimer’s disease-related amyloid-beta42 by human microglia and decrease inflammatory markers. J. Alzheimers Dis. 35: 697–713. [PubMed] [Google Scholar]
- Huang WL, King VR, Curran OE, et al. 2007. A combination of intravenous and dietary docosahexaenoic acid significantly improves outcome after spinal cord injury. Brain 130: 3004–3019. [CrossRef] [PubMed] [Google Scholar]
- Kiecolt-Glaser JK, Belury MA, Porter K, Beversdorf DQ, Lemeshow S, Glaser R. 2007. Depressive symptoms, omega-6:omega-3 fatty acids, and inflammation in older adults. Psychosom. Med. 69: 217–224. [CrossRef] [PubMed] [Google Scholar]
- Kiecolt-Glaser JK, Belury MA, Andridge R, Malarkey WB, Glaser R. 2011. Omega-3 supplementation lowers inflammation and anxiety in medical students: a randomized controlled trial. Brain Behav. Immun. 25: 1725–1734. [CrossRef] [PubMed] [Google Scholar]
- Kiecolt-Glaser JK, Epel ES, Belury MA, et al. 2013. Omega-3 fatty acids, oxidative stress, and leukocyte telomere length: A randomized controlled trial. Brain Behav. Immun. 28: 16–24. [CrossRef] [PubMed] [Google Scholar]
- Krabbe G, Halle A, Matyash V, et al. 2013. Functional impairment of microglia coincides with Beta-amyloid deposition in mice with Alzheimer-like pathology. PLoS One 8: e60921. [CrossRef] [PubMed] [Google Scholar]
- Krstic D, Madhusudan A, Doehner J, et al. 2012. Systemic immune challenges trigger and drive Alzheimer-like neuropathology in mice. J. Neuroinflammation 9: 151. [CrossRef] [PubMed] [Google Scholar]
- Labrousse VF, Nadjar A, Joffre C, Costes L, Aubert A, Gregoire S, Bretillon L, Laye S. 2012. Short-term long chain omega3 diet protects from neuroinflammatory processes and memory impairment in aged mice. PLoS One 7: e36861. [CrossRef] [PubMed] [Google Scholar]
- Lalancette-Hebert M, Gowing G, Simard A, Weng YC, Kriz J. 2007. Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J. Neurosci. 27: 2596–2605. [CrossRef] [PubMed] [Google Scholar]
- Lalancette-Hebert M, Julien C, Cordeau P, et al. 2011. Accumulation of dietary docosahexaenoic acid in the brain attenuates acute immune response and development of postischemic neuronal damage. Stroke 42: 2903–2909. [CrossRef] [PubMed] [Google Scholar]
- Laye S. 2010. Polyunsaturated fatty acids, neuroinflammation and well being. Prostaglandins Leukot Essent Fatty Acids 82: 295–303. [CrossRef] [PubMed] [Google Scholar]
- Laye S, Parnet P, Goujon E, Dantzer R. 1994. Peripheral administration of lipopolysaccharide induces the expression of cytokine transcripts in the brain and pituitary of mice. Brain Res. Mol. Brain Res. 27: 157–162. [CrossRef] [PubMed] [Google Scholar]
- Li L, Wu Y, Wang Y, Wu J, et al. 2014. Resolvin D1 promotes the interleukin-4-induced alternative activation in BV-2 microglial cells. J. Neuroinflammation 11: 72. [CrossRef] [PubMed] [Google Scholar]
- Lim SN, Huang W, Hall JC, Michael-Titus AT, Priestley JV. 2013. Improved outcome after spinal cord compression injury in mice treated with docosahexaenoic acid. Exp. Neurol. 239: 13–27. [CrossRef] [PubMed] [Google Scholar]
- Liu Y, Chen F, Odle J, Lin X, Jacobi SK, Zhu H, Wu Z, Hou Y. 2012. Fish oil enhances intestinal integrity and inhibits TLR4 and NOD2 signaling pathways in weaned pigs after LPS challenge. J. Nutr. 142: 2017–2024. [CrossRef] [PubMed] [Google Scholar]
- Lu Y, Zhao LX, Cao DL, Gao YJ. 2013. Spinal injection of docosahexaenoic acid attenuates carrageenan-induced inflammatory pain through inhibition of microglia-mediated neuroinflammation in the spinal cord. Neuroscience 241: 22–31. [CrossRef] [PubMed] [Google Scholar]
- Lukiw WJ, Cui JG, Marcheselli VL, et al. 2005. A role for docosahexaenoic acidderived neuroprotectin D1 in neural cell survival and Alzheimer disease. J. Clin. Invest. 115: 2774–2783. [CrossRef] [PubMed] [Google Scholar]
- Lynch AM, Moore M, Craig S, Lonergan PE, Martin DS, Lynch MA. 2003. Analysis of interleukin-1 beta-induced cell signaling activation in rat hippocampus following exposure to gamma irradiation. Protective effect of eicosapentaenoic acid. J. Biol. Chem. 278: 51075–51084. [CrossRef] [PubMed] [Google Scholar]
- Lynch AM, Loane DJ, Minogue AM, et al. 2007. Eicosapentaenoic acid confers neuroprotection in the amyloid-beta challenged aged hippocampus. Neurobiol. Aging. 28: 845–855. [CrossRef] [PubMed] [Google Scholar]
- Ma QL, Yang F, Rosario ER, et al. 2009. Beta-amyloid oligomers induce phosphorylation of tau and inactivation of insulin receptor substrate via c-Jun N-terminal kinase signaling: suppression by omega-3 fatty acids and curcumin. J. Neurosci. 29: 9078–9089. [CrossRef] [PubMed] [Google Scholar]
- Madore C, Nadjar A, Delpech JC, et al. 2014. Nutritional n-3 PUFAs deficiency during perinatal periods alters brain innate immune system and neuronal plasticity-associated genes. Brain Behav. Immun. 41: 22–31. [Google Scholar]
- Marcheselli VL, Mukherjee PK, Arita M, et al. 2010. Neuroprotectin D1/protectin D1 stereoselective and specific binding with human retinal pigment epithelial cells and neutrophils. Prostaglandins Leukot Essent Fatty. Acids. 82: 27–34. [CrossRef] [Google Scholar]
- McGeer PL, McGeer EG. 2007. NSAIDs and Alzheimer disease: epidemiological, animal model and clinical studies. Neurobiol. Aging. 28: 639–647. [CrossRef] [PubMed] [Google Scholar]
- McNamara RK, Jandacek R, Rider T, Tso P, Cole-Strauss A, Lipton JW. 2010. Omega-3 fatty acid deficiency increases constitutive pro-inflammatory cytokine production in rats: relationship with central serotonin turnover. Prostaglandins Leukot Essent Fatty Acids 83: 185–191. [CrossRef] [PubMed] [Google Scholar]
- Meydani SN, Lichtenstein AH, White PJ, et al. 1991. Food use and health effects of soybean and sunflower oils. J. Am. Coll. Nutr. 10: 406–428. [CrossRef] [PubMed] [Google Scholar]
- Michaeli B, Berger MM, Revelly JP, Tappy L, Chiolero R. 2007. Effects of fish oil on the neuro-endocrine responses to an endotoxin challenge in healthy volunteers. Clin. Nutr. 26: 70–77. [CrossRef] [PubMed] [Google Scholar]
- Mingam R, Moranis A, Bluthe RM, et al. 2008. Uncoupling of interleukin-6 from its signalling pathway by dietary n-3-polyunsaturated fatty acid deprivation alters sickness behaviour in mice. Eur. J. Neurosci. 28: 1877–1886. [CrossRef] [PubMed] [Google Scholar]
- Minogue AM, Lynch AM, Loane DJ, Herron CE, Lynch MA. 2007. Modulation of amyloid-beta-induced and age-associated changes in rat hippocampus by eicosapentaenoic acid. J. Neurochem. 103: 914–926. [CrossRef] [PubMed] [Google Scholar]
- Moranis A, Delpech JC, De Smedt-Peyrusse V, et al. 2012. Long term adequate n-3 polyunsaturated fatty acid diet protects from depressive-like behavior but not from working memory disruption and brain cytokine expression in aged mice. Brain Behav. Immun. 26: 721–731. [Google Scholar]
- Neurauter G, Schrocksnadel K, Scholl-Burgi S, et al. 2008. Chronic immune stimulation correlates with reduced phenylalanine turnover. Curr. Drug. Metab. 9: 622–627. [CrossRef] [PubMed] [Google Scholar]
- Ngandu T, Lehtisalo J, Solomon A, et al. 2015. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet 6: 2255–63. [CrossRef] [PubMed] [Google Scholar]
- Nguyen LN, Ma D, Shui G, et al. 2014. Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid. Nature 509: 503–506. [CrossRef] [PubMed] [Google Scholar]
- Odusanwo O, Chinthamani S, McCall A, Duffey ME, Baker OJ. 2012. Resolvin D1 prevents TNF-alpha-mediated disruption of salivary epithelial formation. Am. J. Physiol. Cell. Physiol. 302: C1331–1345. [CrossRef] [PubMed] [Google Scholar]
- Olmos G, Llado J. 2014. Tumor necrosis factor alpha: a link between neuroinflammation and excitotoxicity. Mediators. Inflamm. 2014: 861231. [CrossRef] [PubMed] [Google Scholar]
- Ong WY, Farooqui T, Kokotos G, Farooqui AA. 2015. Synthetic and Natural Inhibitors of Phospholipases A: Their Importance for Understanding and Treatment of Neurological Disorders. ACS Chem. Neurosci. 6: 814–31. [CrossRef] [PubMed] [Google Scholar]
- Orr SK, Bazinet RP. 2008. The emerging role of docosahexaenoic acid in neuroinflammation. Curr. Opin. Investig. Drugs 9: 735–743. [PubMed] [Google Scholar]
- Orr SK, Palumbo S, Bosetti F, et al. 2013. Unesterified docosahexaenoic acid is protective in neuroinflammation. J. Neurochem. 127: 378–393. [CrossRef] [PubMed] [Google Scholar]
- Oxenkrug G. 2011. Interferon-gamma-Inducible Inflammation: Contribution to Aging and Aging-Associated Psychiatric Disorders. Aging. Dis. 2: 474–486. [PubMed] [Google Scholar]
- Perry VH, Nicoll JA, Holmes C. 2010. Microglia in neurodegenerative disease. Nat. Rev. Neurol. 6: 193–201. [Google Scholar]
- Pierdomenico AM, Recchiuti A, Simiele F, et al. 2015. MicroRNA-181b regulates ALX/FPR2 receptor expression and proresolution signaling in human macrophages. J. Biol. Chem. 290: 3592–3600. [CrossRef] [PubMed] [Google Scholar]
- Rapoport SI. 2008. Brain arachidonic and docosahexaenoic acid cascades are selectively altered by drugs, diet and disease. Prostaglandins Leukot Essent Fatty Acids 79: 153–156. [CrossRef] [PubMed] [Google Scholar]
- Rees D, Miles EA, Banerjee T, et al. 2006. Dose-related effects of eicosapentaenoic acid on innate immune function in healthy humans: a comparison of young and older men. Am. J. Clin. Nutr. 83: 331–342. [Google Scholar]
- Rice DS, Calandria JM, Gordon WC, et al. 2015. Adiponectin receptor 1 conserves docosahexaenoic acid and promotes photoreceptor cell survival. Nat. Commun. 4: 6:6228. [Google Scholar]
- Rockett BD, Franklin A, Harris M, Teague H, Rockett A, Shaikh SR. 2011. Membrane raft organization is more sensitive to disruption by (n-3) PUFA than nonraft organization in EL4 and B cells. J. Nutr. 141: 1041–1048. [CrossRef] [PubMed] [Google Scholar]
- Ruth MR, Proctor SD, Field CJ. 2009. Feeding long-chain n-3 polyunsaturated fatty acids to obese leptin receptor-deficient JCR:LA- cp rats modifies immune function and lipid-raft fatty acid composition. Br. J. Nutr. 101: 1341–1350. [CrossRef] [PubMed] [Google Scholar]
- Scheltens P, Twisk JW, Blesa R, et al. 2012. Efficacy of Souvenaid in mild Alzheimer’s disease: results from a randomized, controlled trial. J. Alzheimers Dis. 31: 225–36. [PubMed] [Google Scholar]
- Serhan CN. 2007. Resolution phase of inflammation: novel endogenous anti-inflammatory and proresolving lipid mediators and pathways. Annu. Rev. Immunol. 25: 101–137. [CrossRef] [PubMed] [Google Scholar]
- Serhan CN, Chiang N. 2013. Resolution phase lipid mediators of inflammation: agonists of resolution. Curr. Opin. Pharmacol. 13: 632–640. [CrossRef] [PubMed] [Google Scholar]
- Serhan CN, Brain SD, Buckley CD, et al. 2007. Resolution of inflammation: state of the art, definitions and terms. Faseb. J. 21: 325–332. [CrossRef] [PubMed] [Google Scholar]
- Serhan CN, Fredman G, Yang R, et al. 2011. Novel proresolving aspirin-triggered DHA pathway. Chem. Biol. 18: 976–987. [CrossRef] [PubMed] [Google Scholar]
- Serhan CN, Dalli J, Colas RA, Winkler JW, Chiang N. 2015. Protectins and maresins: New pro-resolving families of mediators in acute inflammation and resolution bioactive metabolome. Biochim. Biophys. Acta 1851: 397–413. [Google Scholar]
- Sijben JW, Calder PC. 2007. Differential immunomodulation with long-chain n-3 PUFA in health and chronic disease. Proc. Nutr. Soc. 66: 237–259. [CrossRef] [PubMed] [Google Scholar]
- Song BJ, Elbert A, Rahman T, Orr SK, Chen CT, Febbraio M, Bazinet RP. 2010. Genetic ablation of CD36 does not alter mouse brain polyunsaturated fatty acid concentrations. Lipids 45: 291–299. [CrossRef] [PubMed] [Google Scholar]
- Song C, Leonard BE, Horrobin DF. 2004. Dietary ethyl-eicosapentaenoic acid but not soybean oil reverses central interleukin-1-induced changes in behavior, corticosterone and immune response in rats. Stress 7: 43–54. [CrossRef] [PubMed] [Google Scholar]
- Song C, Manku MS, Horrobin DF. 2008. Long-chain polyunsaturated fatty acids modulate interleukin-1beta-induced changes in behavior, monoaminergic neurotransmitters, and brain inflammation in rats. J. Nutr. 138: 954–963. [CrossRef] [PubMed] [Google Scholar]
- Sparkman NL, Martin LA, Calvert WS, Boehm GW. 2005. Effects of intraperitoneal lipopolysaccharide on Morris maze performance in year-old and 2-month-old female C57BL/6J mice. Behav. Brain Res. 159: 145–151. [CrossRef] [PubMed] [Google Scholar]
- Sundaram JR, Poore CP, Sulaimee NH, Pareek T, Asad AB, Rajkumar R, Cheong WF, Wenk MR, Dawe GS, Chuang KH, Pant HC, Kesavapany S. 2013. Specific inhibition of p25/Cdk5 activity by the Cdk5 inhibitory peptide reduces neurodegeneration in vivo. J. Neurosci. 33: 334–343. [CrossRef] [PubMed] [Google Scholar]
- Tremblay ME, Stevens B, Sierra A, Wake H, Bessis A, Nimmerjahn A. 2011. The role of microglia in the healthy brain. J. Neurosci. 31: 16064–16069. [CrossRef] [PubMed] [Google Scholar]
- Vauzour D. 2012. Dietary polyphenols as modulators of brain functions: biological actions and molecular mechanisms underpinning their beneficial effects. Oxid. Med. Cell. Longev. 2012: 914273. [Google Scholar]
- Vedin I, Cederholm T, Freund Levi Y, et al. 2008. Effects of docosahexaenoic acid-rich n-3 fatty acid supplementation on cytokine release from blood mononuclear leukocytes: the OmegAD study. Am. J. Clin. Nutr. 87: 1616–1622. [CrossRef] [PubMed] [Google Scholar]
- Wang Q, Zheng X, Cheng Y, et al. 2014. Resolvin D1 stimulates alveolar fluid clearance through alveolar epithelial sodium channel, Na,K-ATPase via ALX/cAMP/PI3K pathway in lipopolysaccharide-induced acute lung injury. J. Immunol. 192: 3765–3777. [CrossRef] [PubMed] [Google Scholar]
- Wang X, Hjorth E, Vedin I, et al. 2015a. Effects of n-3 FA supplementation on the release of proresolving lipid mediators by blood mononuclear cells: the OmegAD study. J. Lipid. Res. 56: 674–681. [Google Scholar]
- Wang X, Zhu M, Hjorth E, et al. 2015b. Resolution of inflammation is altered in Alzheimer’s disease. Alzheimers Dement 11: 40-50 e41-42. [CrossRef] [PubMed] [Google Scholar]
- Xu MX, Tan BC, Zhou W, et al. 2013, Resolvin D1, an endogenous lipid mediator for inactivation of inflammation-related signaling pathways in microglial cells, prevents lipopolysaccharide-induced inflammatory responses. CNS Neurosci. Ther. 19: 235–243. [CrossRef] [PubMed] [Google Scholar]
- Yang L, Zhang Y, Wang S, Zhang W, Shi R. 2014. Decreased liver peroxisomal beta-oxidation accompanied by changes in brain fatty acid composition in aged rats. Neurol. Sci. 35: 289–293. [CrossRef] [PubMed] [Google Scholar]
- Yates CM, Calder PC, Ed Rainger G. 2014. Pharmacology and therapeutics of omega-3 polyunsaturated fatty acids in chronic inflammatory disease. Pharmacol. Ther. 141: 272–282. [CrossRef] [PubMed] [Google Scholar]
- Yehuda S, Rabinovitz S, Carasso RL, Mostofsky DI. 2002. The role of polyunsaturated fatty acids in restoring the aging neuronal membrane. Neurobiol. Aging. 23: 843–853. [CrossRef] [PubMed] [Google Scholar]
- Yehuda S, Rabinovitz S, Mostofsky DI. 2005. Essential fatty acids and the brain: from infancy to aging. Neurobiol. Aging 26: 98–102. [Google Scholar]
- Zamzow DR, Elias V, Legette LL, Choi J, Stevens JF, Magnusson KR. 2014. Xanthohumol improved cognitive flexibility in young mice. Behav. Brain Res. 275: 1–10. [CrossRef] [PubMed] [Google Scholar]
- Zhu M, Wang X, Schultzberg M, Hjorth E. 2015. Differential regulation of resolution in inflammation induced by amyloid-beta42 and lipopolysaccharides in human microglia. J. Alzheimers Dis. 43: 1237–1250. [PubMed] [Google Scholar]
- Zunszain PA, Anacker C, Cattaneo A, et al. 2012. Interleukin-1beta: a new regulator of the kynurenine pathway affecting human hippocampal neurogenesis. Neuropsychopharmacology 37: 939–949. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.