Open Access
Review
Numéro
OCL
Volume 22, Numéro 4, July-August 2015
Numéro d'article D408
Nombre de pages 6
Section Dossier: 12th Euro Fed Lipids Congress: Oils, Fats and Lipids: From Lipidomics to Industrial Innovation
DOI https://doi.org/10.1051/ocl/2015026
Publié en ligne 7 juillet 2015
  • Abbott AP, Boothby D, Capper G, Davies DL, Rasheed RK. 2004. Deep Eutectic Solvents formed between choline chloride and carboxylic acids: Versatile alternatives to ionic liquids. J. Am. Chem. Soc. 126: 9142–9147. [CrossRef] [PubMed] [Google Scholar]
  • Abbott AP, Capper G, Davies DL, Rasheed RK, Tambyrajah V. 2003. Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 70–71. [Google Scholar]
  • Alemán M, Bou R, Guardiola F, et al. 2015. Antioxidative effect of lipophilized caffeic acid in fish oil enriched mayonnaise and milk. Food Chem. 167: 236–244. [CrossRef] [PubMed] [Google Scholar]
  • Borse BN, Shukla SR, Sonawane YA, Shankerling GS. 2013. Synthesis of some novel pyrimidinedione and pyrimidinetrione derivatives by a greener method: Study of their antimicrobial activity and photophysical properties. Synth. Commun. 43: 865–876. [CrossRef] [Google Scholar]
  • Choi YH, van Spronsen J, Dai Y, et al. 2011. Are natural deep eutectic solvents the missing link in understanding cellular metabolism and physiology? Plant Physiol. 156: 1701–1705. [CrossRef] [PubMed] [Google Scholar]
  • Dai Y, van Spronsen J, Witkamp GJ, Verpoorte R, Choi YH. 2013. Natural deep eutectic solvents as new potential media for green technology. Anal. Chim. Acta 766: 61–68. [CrossRef] [PubMed] [Google Scholar]
  • Durand E, Lecomte J, Baréa B, et al. 2012. Evaluation of deep eutectic solvents as new media for Candida antarctica B lipase catalyzed reactions. Process Biochem. 47: 2081–2089. [CrossRef] [Google Scholar]
  • Durand E, Lecomte J, Baréa B, et al. 2013. Evaluation of deep eutectic solvent–water binary mixtures for lipase-catalyzed lipophilization of phenolic acids. Green Chem. 15: 2275. [CrossRef] [Google Scholar]
  • Durand E, Lecomte J, Villeneuve P. 2013. Deep eutectic solvents: Synthesis, application, and focus on lipase-catalyzed reactions. Eur. J. Lipid Sci. Technol. 115: 379–385. [CrossRef] [Google Scholar]
  • Durand E, Lecomte J, Baréa B, et al. 2014. Towards a better understanding of how to improve lipase-catalyzed reactions using deep eutectic solvents based on choline chloride. Eur. J. Lipid Sci. Technol. 116: 16–23. [CrossRef] [Google Scholar]
  • Durand E, Bayrasy C, Laguerre M, et al. 2015. Regioselective synthesis of diacylglycerol rosmarinates and evaluation of their antioxidant activity in fibroblasts. Eur. J. Lipid Sci. Technol., in press. [Google Scholar]
  • Figueroa-Espinoza MC, Villeneuve P. 2005. Phenolic acids enzymatic lipophilization. J. Agric. Food Chem. 53: 2779–2787. [Google Scholar]
  • Gorke JT, Srienc F, Kazlauskas RJ. 2008. Hydrolase-catalyzed biotransformations in deep eutectic solvents. Chem. Commun. 1235–1237. [Google Scholar]
  • Gorke JT, Kazlauskas RJ. 2009. Enzymatic processing in deep eutectic solvents. US PATENT, N° 20090117. [Google Scholar]
  • Huang WY, Cai YZ, Zhang Y. 2009. Natural phenolic compounds from medicinal herbs and dietary plants: potential use for cancer prevention. Nutr. Cancer 62: 1–20. [CrossRef] [Google Scholar]
  • Kareem MA, Mjalli FS, Hashim MA, Alnashef IM. 2010. Phosphonium-based ionic liquids analogues and their physical properties. J. Chem. Eng. Data 55: 4632–4637. [CrossRef] [Google Scholar]
  • Laguerre M, López Giraldo LJ, Lecomte J, et al. 2010. Relationship between hydrophobicity and antioxidant ability of “phenolipids” in emulsion: A parabolic effect of the chain length of rosmarinate esters. J. Agric. Food Chem. 58: 2869–2876. [Google Scholar]
  • Li W, Zhang Z, Han B, et al. 2008. Switching the basicity of ionic liquids by CO2. Green Chem. 10: 1142–1145. [CrossRef] [Google Scholar]
  • Lindberg D, de la Fuente Revenga M, Widersten M. 2010. Deep eutectic solvents (DESs) are viable cosolvents for enzyme-catalyzed epoxide hydrolysis. J. Biotechnol. 147: 169–171. [CrossRef] [PubMed] [Google Scholar]
  • Maugeri Z, Domínguez de María P. 2012. Novel choline-chloride-based deep-eutectic-solvents with renewable hydrogen bond donors: levulinic acid and sugar-based polyols. RSC Adv. 2: 421. [CrossRef] [Google Scholar]
  • Maugeri Z, Leitner W, Domínguez De María P. 2013. Chymotrypsin-catalyzed peptide synthesis in deep eutectic solvents. Eur. J. Organic Chem. 4223–4228. [Google Scholar]
  • Monhemi H, Housaindokht MR, Moosavi-Movahedi AA, Bozorgmehr MR. 2014. How a protein can remain stable in a solvent with high content of urea: insights from molecular dynamics simulation of Candida antarctica lipase B in urea: choline chloride deep eutectic solvent. Phys. Chem. Chem. Phys. 16: 14882–93. [CrossRef] [PubMed] [Google Scholar]
  • Nam MW, Zhao J, Lee MS, Jeong JH, Lee J. 2015. Enhanced extraction of bioactive natural products using tailor-made deep eutectic solvents: application to flavonoid extraction from Flos sophorae. Green Chem. 17: 1718–1727. [CrossRef] [Google Scholar]
  • Pang N, Gu SS, Wang J, et al. 2013. A novel chemoenzymatic synthesis of propyl caffeate using lipase-catalyzed transesterification in ionic liquid. Bioresour. Technol. 139: 337–342. [CrossRef] [PubMed] [Google Scholar]
  • Ranke J, Mölter K, Stock F, et al. 2004. Biological effects of imidazolium ionic liquids with varying chain lengths in acute Vibrio fischeri and WST-1 cell viability assays. Ecotoxicol. Environ. Saf. 58: 396–404. [CrossRef] [PubMed] [Google Scholar]
  • Soobrattee MA, Neergheen VS, Luximon-Ramma A, Aruoma OI, Bahorun T. 2005. Phenolics as potential antioxidant therapeutic agents: Mechanism and actions. Mutat. Res.-Fund. Mol. Mech. Mutagen. 579: 200–213. [Google Scholar]
  • Stolte S, Arning J, Bottin-Weber U, et al. 2006. Anion effects on the cytotoxicity of ionic liquids. Green Chem. 8: 621-629. [CrossRef] [Google Scholar]
  • Su WC, Wong DSH, Li MH. 2009. Effect of Water on Solubility of Carbon Dioxide in (Aminomethanamide + 2-Hydroxy- N, N, N-trimethylethanaminium Chloride). J. Chem. Eng. Data 54: 1951–1955. [CrossRef] [Google Scholar]
  • Van den Berghe W. 2012. Epigenetic impact of dietary polyphenols in cancer chemoprevention: Lifelong remodeling of our epigenomes. Pharmacol. Res. 65: 565–576. [CrossRef] [PubMed] [Google Scholar]
  • Villeneuve P. 2007. Lipases in lipophilization reactions. Biotechnol. Adv. 25: 515-536. [CrossRef] [PubMed] [Google Scholar]
  • Weitkamp P, Vosmann K, Weber N. 2006. Highly efficient preparation of lipophilic hydroxycinnamates by solvent-free lipase-catalyzed transesterification. J. Agric. Food Chem. 54: 7062–7068. [CrossRef] [PubMed] [Google Scholar]
  • Wu BP, Wen Q, Xu H, Yang Z. 2014. Insights into the impact of deep eutectic solvents on horseradish peroxidase: Activity, stability and structure. J. Mol. Catal. B. Enzymatic 101: 101–107. [CrossRef] [Google Scholar]
  • Yang Z, Guo Z, Xu X. 2012. Enzymatic lipophilisation of phenolic acids through esterification with fatty alcohols in organic solvents. Food Chem. 132: 1311–1315. [CrossRef] [Google Scholar]
  • Zhao H, Baker GA, Holmes S. 2011. Protease activation in glycerol-based deep eutectic solvents. J. Mol. Catal. B Enzymatic 72: 163–167. [CrossRef] [Google Scholar]
  • Zhao H, Zhang C, Crittle TD. 2013. Choline-based deep eutectic solvents for enzymatic preparation of biodiesel from soybean oil. J. Mol. Catal. B Enzymatic 85-86: 243–247. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.